Clemmensen reduction

Last updated
Clemmensen reduction
Named after Erik Christian Clemmensen
Reaction type Organic redox reaction
Reaction
Ketone or Aldehyde
+
Zn(Hg)
+
HCl
Reduction product
Conditions
Catalyst
Identifiers
Organic Chemistry Portal clemmensen-reduction
RSC ontology ID RXNO:0000038

Clemmensen reduction is a chemical reaction described as a reduction of ketones or aldehydes to alkanes using zinc amalgam and concentrated hydrochloric acid (HCl). [1] [2] This reaction is named after Erik Christian Clemmensen, a Danish-American chemist. [3]

Contents

Scheme 1: Reaction scheme of Clemmensen Reduction. Clemmensen Reduction Scheme.svg
Scheme 1: Reaction scheme of Clemmensen Reduction.

Clemmensen reduction conditions are particularly effective at reducing aryl [4] -alkyl ketones, [5] [6] such as those formed in a Friedel-Crafts acylation. The two-step sequence of Friedel-Crafts acylation followed by Clemmensen reduction constitutes a classical strategy for the primary alkylation of arenes.  

Mechanism

Scheme 2: A mechanism of Clemmensen reduction was proposed in 1975. The carbonyl is first converted to radical anion (shown as blue), then to zinc carbenoid (shown as red), and then reduced to alkane. Clemmensen Reduction.png
Scheme 2: A mechanism of Clemmensen reduction was proposed in 1975. The carbonyl is first converted to radical anion (shown as blue), then to zinc carbenoid (shown as red), and then reduced to alkane.

Despite the reaction being first discovered in 1914, the mechanism of the Clemmensen reduction remains obscure. Due to the heterogeneous nature of the reaction, mechanistic studies are difficult, and only a handful of studies have been disclosed. [9] [10] Mechanistic proposals generally invoke organozinc intermediates, sometimes including zinc carbenoids, either as discrete species or as organic fragments bound to the zinc metal surface. Brewster proposed the possibility of the reduction occurring at the metal surface. Depending on the constitution of the carbonyl compound or the acidity of the reaction, a carbon-metal or oxygen-metal bond can form after the compound attaches to the metal surface. [9] Furthermore, Vedeja proposed a mechanism involving the formation of radical anion and zinc carbenoid, followed by reduction to alkane [7] [8] (as shown above). However, alcohol and carbanion are not believed to be intermediates, since exposing alcohol to Clemmensen conditions rarely affords the alkane product. [9] [11]

Application

Highly symmetrical hydrocarbon compounds have attracted much interest due to their beautiful structure and potential applications, but the challenges in the synthesis persist. Suzuki et al. synthesized dibarrelane, a type of hydrocarbon compound, using Clemmensen reduction. [12] They hypothesized that the secondary alcohol underwent an SN1 reaction, forming a chloride. Then, an excess amount of zinc reduced the chloride. Importantly, the reaction effectively reduced the two ketones, alcohol, and the methoxycarbonyl group while avoiding any by-products, giving the product in high yield (61%).

Scheme 3: The synthesis of Dibarrelane . Synthesis of dibarrelane.png
Scheme 3: The synthesis of Dibarrelane .

Clemmensen reduction is not particularly effective with aliphatic or cyclic ketones. A modified condition, involving activated zinc dust in an anhydrous-solution of hydrogen chloride in diethyl ether or acetic anhydride, results in a more effective reduction.The modified Clemmensen reduction allows for the selective deoxygenation of ketones in molecules that contain stable groups such as cyano, amido, acetoxy, and carboalkoxy. Yamamura et al. effectively reduced cholestane-3-one to cholestane using the modified Clemmensen condition and gave the product in high yield (~76%). [13]

Scheme 4: Reducing cholestane-3-one to cholestane using Clemmensen reduction . Modified clemmensen reduction Cholestane.png
Scheme 4: Reducing cholestane-3-one to cholestane using Clemmensen reduction .

Problems and alternative approaches

To perform the Clemmensen reduction, the substrate must be tolerant of the strongly acidic conditions of the reaction (37% HCl). Several alternatives are available. Wolff-Kishner reduction can reduce acid-sensitive substrates that are stable to strong bases. For substrates stable to hydrogenolysis in the presence of Raney nickel, a milder two-step Mozingo reduction method is available.

Further reading

See also

Related Research Articles

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Hydrazone</span> Organic compounds - Hydrazones

Hydrazones are a class of organic compounds with the structure R1R2C=N−NH2. They are related to ketones and aldehydes by the replacement of the oxygen =O with the =N−NH2 functional group. They are formed usually by the action of hydrazine on ketones or aldehydes.

The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.

<span class="mw-page-title-main">Nitro compound</span> Organic compound containing an −NO₂ group

In organic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups. The nitro group is one of the most common explosophores used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting with nitric acid.

<span class="mw-page-title-main">Aluminium chloride</span> Chemical compound

Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula AlCl3. It forms a hexahydrate with the formula [Al(H2O)6]Cl3, containing six water molecules of hydration. Both the anhydrous form and the hexahydrate are colourless crystals, but samples are often contaminated with iron(III) chloride, giving them a yellow colour.

<span class="mw-page-title-main">Benzoyl chloride</span> Organochlorine compound (C7H5ClO)

Benzoyl chloride, also known as benzenecarbonyl chloride, is an organochlorine compound with the formula C7H5ClO. It is a colourless, fuming liquid with an irritating odour, and consists of a benzene ring with an acyl chloride substituent. It is mainly useful for the production of peroxides but is generally useful in other areas such as in the preparation of dyes, perfumes, pharmaceuticals, and resins.

<span class="mw-page-title-main">Knorr pyrrole synthesis</span> Chemical reaction

The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group α to a carbonyl group (2).

The Dakin–West reaction is a chemical reaction that transforms an amino-acid into a keto-amide using an acid anhydride and a base, typically pyridine. It is named for Henry Drysdale Dakin (1880–1952) and Randolph West (1890–1949). In 2016 Schreiner and coworkers reported the first asymmetric variant of this reaction employing short oligopeptides as catalysts.

<span class="mw-page-title-main">Aluminium isopropoxide</span> Chemical compound

Aluminium isopropoxide is the chemical compound usually described with the formula Al(O-i-Pr)3, where i-Pr is the isopropyl group (–CH(CH3)2). This colourless solid is a useful reagent in organic synthesis.

The Bamberger rearrangement is the chemical reaction of phenylhydroxylamines with strong aqueous acid, which will rearrange to give 4-aminophenols. It is named for the German chemist Eugen Bamberger (1857–1932).

The Gattermann reaction (also known as the Gattermann formylation and the Gattermann salicylaldehyde synthesis) is a chemical reaction in which aromatic compounds are formylated by a mixture of hydrogen cyanide (HCN) and hydrogen chloride (HCl) in the presence of a Lewis acid catalyst such as aluminium chloride (AlCl3). It is named for the German chemist Ludwig Gattermann and is similar to the Friedel–Crafts reaction.

The Meerwein–Ponndorf–Verley (MPV) reduction in organic chemistry is the reduction of ketones and aldehydes to their corresponding alcohols utilizing aluminium alkoxide catalysis in the presence of a sacrificial alcohol. The advantages of the MPV reduction lie in its high chemoselectivity, and its use of a cheap environmentally friendly metal catalyst. MPV reductions have been described as "obsolete" owing to the development of sodium borohydride and related reagents.

The reduction of nitro compounds are chemical reactions of wide interest in organic chemistry. The conversion can be effected by many reagents. The nitro group was one of the first functional groups to be reduced. Alkyl and aryl nitro compounds behave differently. Most useful is the reduction of aryl nitro compounds.

The Willgerodt rearrangement or Willgerodt reaction is an organic reaction converting an aryl alkyl ketone, alkyne, or alkene to the corresponding amide by reaction with ammonium polysulfide, named after Conrad Willgerodt. The formation of the corresponding carboxylic acid is a side reaction resulting from hydrolysis of the amide. When the alkyl group is an aliphatic chain, multiple reactions take place with the amide group always ending up at the terminal end. The net effect is thus migration of the carbonyl group to the end of the chain and oxidation.

In organic chemistry, the Claisen–Schmidt condensation is the reaction between an aldehyde or ketone having an α-hydrogen with an aromatic carbonyl compound lacking an α-hydrogen. It can be considered as a specific variation of the aldol condensation. This reaction is named after two of its pioneering investigators Rainer Ludwig Claisen and J. Gustav Schmidt, who independently published on this topic in 1880 and 1881. An example is the synthesis of dibenzylideneacetone ( -1,5-diphenylpenta-1,4-dien-3-one).

The Hoesch reaction or Houben–Hoesch reaction is an organic reaction in which a nitrile reacts with an arene compound to form an aryl ketone. The reaction is a type of Friedel-Crafts acylation with hydrogen chloride and a Lewis acid catalyst.

<span class="mw-page-title-main">Carbonyl reduction</span> Organic reduction of any carbonyl group by a reducing agent

In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds. Carboxylic acids, esters, and acid halides can be reduced to either aldehydes or a step further to primary alcohols, depending on the strength of the reducing agent. Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H.

In organic chemistry, ketonic decarboxylation is a type of organic reaction and a decarboxylation converting two equivalents of a carboxylic acid to a symmetric ketone by the application of heat. It can be thought of as a decarboxylative Claisen condensation of two identical molecules. Water and carbon dioxide are byproducts:

References

  1. Smith, Michael (2007). March's advanced organic chemistry : reactions, mechanisms, and structure. Jerry March (6th ed.). Hoboken, N.J.: Wiley-Interscience. p. 1835. ISBN   978-0-471-72091-1. OCLC   69020965.
  2. Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 453. ISBN   978-0387683546.
  3. Clemmensen, Erik (1913). "Reduktion von Ketonen und Aldehyden zu den entsprechenden Kohlenwasserstoffen unter Anwendung von amalgamiertem Zink und Salzsäure". Berichte der Deutschen Chemischen Gesellschaft. 46 (2): 1837–1843. doi:10.1002/cber.19130460292. ISSN   0365-9496.
  4. Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 453. ISBN   978-0387683546.
  5. "Y-Phenylbutyric Acid". Organic Syntheses. 15: 64. 1935. doi:10.15227/orgsyn.015.0064. ISSN   0078-6209.
  6. "CREOSOL". Organic Syntheses. 33: 17. 1953. doi:10.15227/orgsyn.033.0017. ISSN   0078-6209.
  7. 1 2 Li, Jie Jack (2021), Li, Jie Jack (ed.), "Clemmensen Reduction", Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications, Cham: Springer International Publishing, pp. 109–111, doi:10.1007/978-3-030-50865-4_31, ISBN   978-3-030-50865-4, S2CID   243452810 , retrieved 2023-04-01
  8. 1 2 Vedejs, E. (1975), John Wiley & Sons, Inc. (ed.), "Clemmensen Reduction of Ketones in Anhydrous Organic Solvents", Organic Reactions, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 401–422, doi:10.1002/0471264180.or022.03, ISBN   978-0-471-26418-7 , retrieved 2023-04-01
  9. 1 2 3 Brewster, James H. (1954). "Reductions at Metal Surfaces. II. A Mechanism for the Clemmensen Reduction 1". Journal of the American Chemical Society. 76 (24): 6364–6368. doi:10.1021/ja01653a035. ISSN   0002-7863.
  10. Nakabayashi, Tadaaki (1960). "Studies on the Mechanism of Clemmensen Reduction. I. The Kinetics of Clemmensen Reduction of p-Hydroxyacetophenone". Journal of the American Chemical Society. 82 (15): 3900–3906. doi:10.1021/ja01500a029. ISSN   0002-7863.
  11. Martin, Elmore L. (2011), John Wiley & Sons, Inc. (ed.), "The Clemmensen Reduction", Organic Reactions, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 155–209, doi:10.1002/0471264180.or001.07, ISBN   978-0-471-26418-7 , retrieved 2023-03-31
  12. 1 2 Suzuki, Takahiro; Okuyama, Hiroshi; Takano, Atsuhiro; Suzuki, Shinya; Shimizu, Isao; Kobayashi, Susumu (2014-03-21). "Synthesis of Dibarrelane, a Dibicyclo[2.2.2]octane Hydrocarbon". The Journal of Organic Chemistry. 79 (6): 2803–2808. doi:10.1021/jo5003455. ISSN   0022-3263. PMID   24564301.
  13. 1 2 "Modified Clemmensen Reduction: Cholestane". Organic Syntheses. 53: 86. 1973. doi:10.15227/orgsyn.053.0086.