A-values are numerical values used in the determination of the most stable orientation of atoms in a molecule (conformational analysis), as well as a general representation of steric bulk. A-values are derived from energy measurements of the different cyclohexane conformations of a monosubstituted cyclohexane chemical. [1] Substituents on a cyclohexane ring prefer to reside in the equatorial position to the axial. The difference in Gibbs free energy (ΔG) between the higher energy conformation (axial substitution) and the lower energy conformation (equatorial substitution) is the A-value for that particular substituent.
A-values help predict the conformation of cyclohexane rings. The most stable conformation will be the one which has the substituent or substituents equatorial. When multiple substituents are taken into consideration, the conformation where the substituent with the largest A-value is equatorial is favored.
The utility of A-values can be generalized for use outside of cyclohexane conformations. A-values can help predict the steric effect of a substituent. In general, the larger a substituent's A-value, the larger the steric effect of that substituent. A methyl group has an A-value of 1.74 while tert-butyl group has an A-value of ~5. Because the A-value of tert-butyl is higher, tert-butyl has a larger steric effect than methyl. This difference in steric effects can be used to help predict reactivity in chemical reactions.
Steric effects play a major role in the assignment of configurations in cyclohexanes. One can use steric hindrances to determine the propensity of a substituent to reside in the axial or equatorial plane. It is known that axial bonds are more hindered than the corresponding equatorial bonds. This is because substituents in the axial position are relatively close to two other axial substituents. This makes it very crowded when bulky substituents are oriented in the axial position. These types of steric interactions are commonly known as 1,3 diaxial interactions. [2] These types of interactions are not present with substituents at the equatorial position.
There are generally considered three principle contributions to the conformational free energy: [3]
When comparing relative stability, 6- and 7-atom interactions can be used to approximate differences in enthalpy between conformations. Each 6-atom interaction is worth 0.9 kcal/mol (3.8 kJ/mol) and each 7-atom interaction is worth 4 kcal/mol (17 kJ/mol). [4]
Entropy also plays a role in a substituent's preference for the equatorial position. The entropic component is determined by the following formula:
Where σ is equal to the number of microstates available for each conformation.
Due to the larger number of possible conformations of ethyl cyclohexane, the A value is reduced from what would be predicted based purely on enthalpic terms. Due to these favorable entropic conditions, the steric relevance of an ethyl group is similar to that of a methyl substituent.
Substituent | A-value | Substituent | A-value | Substituent | A-value | ||
---|---|---|---|---|---|---|---|
D | 0.006 | CH2Br | 1.79 | OSi(CH3)3 | 0.74 | ||
F | 0.15 | CH(CH3)2 | 2.15 | OH | 0.87 | ||
Cl | 0.43 | c-C6H11 | 2.15 | OCH3 | 0.6 | ||
Br | 0.38 | C(CH3)3 | >4 | OCD3 | 0.56 | ||
I | 0.43 | Ph | 3 | OCH2CH3 | 0.9 | ||
CN | 0.17 | CO2H | 1.35 | O-Ac | 0.6 | ||
NC | 0.21 | CO2− | 1.92 | O-TFA | 0.68 | ||
NCO | 0.51 | CO2CH3 | 1.27 | OCHO | 0.27 | ||
NCS | 0.28 | CO2Et | 1.2 | O-Ts | 0.5 | ||
N=C=NR | 1 | CO2iPr | 0.96 | ONO2 | 0.59 | ||
CH3 | 1.7 | COCl | 1.25 | NH2 | 1.6 | ||
CF3 | 2.1 | COCH3 | 1.17 | NHCH3 | 1 | ||
CH2CH3 | 1.75 | SH | 0.9 | N(CH3)2 | 2.1 [10] | ||
CH=CH2 | 1.35 | SMe | 0.7 | NH3+ | 1.9 | ||
CCH | 0.41 | SPh | 0.8 | NO2 | 1.1 | ||
CH2tBu | 2 | S− | 1.3 | HgBr | ~0 | ||
CH2OTs | 1.75 | SOPh | 1.9 | HgCl | 0.3 | ||
SO2Ph | 2.5 | Si(CH3)3 | 2.5 |
One of the original experiments performed by Winston and Holness was measuring the rate of oxidation in trans and cis substituted rings using a chromium catalyst. The large tert-butyl group used locks the conformation of each molecule, placing it equatorial (cis compound shown).
It was observed that the cis compound underwent oxidation at a much faster rate than the trans compound. The proposition was that the large hydroxyl group in the axial position was disfavored and formed the carbonyl more readily to relieve this strain. The trans compound had rates identical to those found in the monosubstituted cyclohexanol.
Using the A-values of the hydroxyl and isopropyl subunit, the energetic value of a favorable intramolecular hydrogen bond can be calculated. [11]
A-Values are measured using a mono-substituted cyclohexane ring, and are an indication of only the sterics a particular substituent imparts on the molecule. This leads to a problem when there are possible stabilizing electronic factors in a different system. The carboxylic acid substituent shown below is axial in the ground state, despite a positive A-value. From this observation, it is clear that there are other possible electronic interactions that stabilize the axial conformation.
A-values do not predict the physical size of a molecule, only the steric effect. For example, the tert-butyl group (A-value=4.9) has a larger A-value than the trimethylsilyl group (A-value=2.5), yet the tert-butyl group actually occupies less space. This difference can be attributed to the longer length of the carbon–silicon bond as compared to the carbon–carbon bond of the tert-butyl group. The longer bond allows for less interactions with neighboring substituents, which effectively makes the trimethylsilyl group less sterically hindering, thus, lowering its A-value. [2] This can also be seen when comparing the halogens. Bromine, iodine, and chlorine all have similar A-values even though their atomic radii differ. [4] A-values then, predict the apparent size of a substituent, and the relative apparent sizes determine the differences in steric effects between compounds. Thus, A-values are useful tools in determining compound reactivity in chemical reactions.
In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in space. This contrasts with structural isomers, which share the same molecular formula, but the bond connections or their order differs. By definition, molecules that are stereoisomers of each other represent the same structural isomer.
The structural formula of a chemical compound is a graphic representation of the molecular structure, showing how the atoms are possibly arranged in the real three-dimensional space. The chemical bonding within the molecule is also shown, either explicitly or implicitly. Unlike other chemical formula types, which have a limited number of symbols and are capable of only limited descriptive power, structural formulas provide a more complete geometric representation of the molecular structure. For example, many chemical compounds exist in different isomeric forms, which have different enantiomeric structures but the same molecular formula. There are multiple types of ways to draw these structural formulas such as: Lewis structures, condensed formulas, skeletal formulas, Newman projections, Cyclohexane conformations, Haworth projections, and Fischer projections.
Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is generally a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape (conformation) and reactivity of ions and molecules. Steric effects complement electronic effects, which dictate the shape and reactivity of molecules. Steric repulsive forces between overlapping electron clouds result in structured groupings of molecules stabilized by the way that opposites attract and like charges repel.
Cyclohexane conformations are any of several three-dimensional shapes adopted by molecules of cyclohexane. Because many compounds feature structurally similar six-membered rings, the structure and dynamics of cyclohexane are important prototypes of a wide range of compounds.
In chemistry, conformational isomerism is a form of stereoisomerism in which the isomers can be interconverted just by rotations about formally single bonds. While any two arrangements of atoms in a molecule that differ by rotation about single bonds can be referred to as different conformations, conformations that correspond to local minima on the potential energy surface are specifically called conformational isomers or conformers. Conformations that correspond to local maxima on the energy surface are the transition states between the local-minimum conformational isomers. Rotations about single bonds involve overcoming a rotational energy barrier to interconvert one conformer to another. If the energy barrier is low, there is free rotation and a sample of the compound exists as a rapidly equilibrating mixture of multiple conformers; if the energy barrier is high enough then there is restricted rotation, a molecule may exist for a relatively long time period as a stable rotational isomer or rotamer. When the time scale for interconversion is long enough for isolation of individual rotamers, the isomers are termed atropisomers. The ring-flip of substituted cyclohexanes constitutes another common form of conformational isomerism.
In chemistry an eclipsed conformation is a conformation in which two substituents X and Y on adjacent atoms A, B are in closest proximity, implying that the torsion angle X–A–B–Y is 0°. Such a conformation can exist in any open chain, single chemical bond connecting two sp3-hybridised atoms, and it is normally a conformational energy maximum. This maximum is often explained by steric hindrance, but its origins sometimes actually lie in hyperconjugation.
In chemistry, a molecule experiences strain when its chemical structure undergoes some stress which raises its internal energy in comparison to a strain-free reference compound. The internal energy of a molecule consists of all the energy stored within it. A strained molecule has an additional amount of internal energy which an unstrained molecule does not. This extra internal energy, or strain energy, can be likened to a compressed spring. Much like a compressed spring must be held in place to prevent release of its potential energy, a molecule can be held in an energetically unfavorable conformation by the bonds within that molecule. Without the bonds holding the conformation in place, the strain energy would be released.
In organic chemistry, ring strain is a type of instability that exists when bonds in a molecule form angles that are abnormal. Strain is most commonly discussed for small rings such as cyclopropanes and cyclobutanes, whose internal angles are substantially smaller than the idealized value of approximately 109°. Because of their high strain, the heat of combustion for these small rings is elevated.
Macrocycles are often described as molecules and ions containing a ring of twelve or more atoms. Classical examples include the crown ethers, calixarenes, porphyrins, and cyclodextrins. Macrocycles describe a large, mature area of chemistry.
In organic chemistry, hyperconjugation refers to the delocalization of electrons with the participation of bonds of primarily σ-character. Usually, hyperconjugation involves the interaction of the electrons in a sigma (σ) orbital with an adjacent unpopulated non-bonding p or antibonding σ* or π* orbitals to give a pair of extended molecular orbitals. However, sometimes, low-lying antibonding σ* orbitals may also interact with filled orbitals of lone pair character (n) in what is termed negative hyperconjugation. Increased electron delocalization associated with hyperconjugation increases the stability of the system. In particular, the new orbital with bonding character is stabilized, resulting in an overall stabilization of the molecule. Only electrons in bonds that are in the β position can have this sort of direct stabilizing effect — donating from a sigma bond on an atom to an orbital in another atom directly attached to it. However, extended versions of hyperconjugation can be important as well. The Baker–Nathan effect, sometimes used synonymously for hyperconjugation, is a specific application of it to certain chemical reactions or types of structures.
In organic chemistry, a ring flip is the interconversion of cyclic conformers that have equivalent ring shapes that results in the exchange of nonequivalent substituent positions. The overall process generally takes place over several steps, involving coupled rotations about several of the molecule's single bonds, in conjunction with minor deformations of bond angles. Most commonly, the term is used to refer to the interconversion of the two chair conformers of cyclohexane derivatives, which is specifically referred to as a chair flip, although other cycloalkanes and inorganic rings undergo similar processes.
In organic chemistry, the anomeric effect or Edward-Lemieux effect is a stereoelectronic effect that describes the tendency of heteroatomic substituents adjacent to a heteroatom within a cyclohexane ring to prefer the axial orientation instead of the less-hindered equatorial orientation that would be expected from steric considerations. This effect was originally observed in pyranose rings by J. T. Edward in 1955 when studying carbohydrate chemistry.
A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.
In the study of conformational isomerism, the gauche effect is an atypical situation where a gauche conformation is more stable than the anti conformation (180°).
Asymmetric induction describes the preferential formation in a chemical reaction of one enantiomer or diastereoisomer over the other as a result of the influence of a chiral feature present in the substrate, reagent, catalyst or environment. Asymmetric induction is a key element in asymmetric synthesis.
Allylic strain in organic chemistry is a type of strain energy resulting from the interaction between a substituent on one end of an olefin with an allylic substituent on the other end. If the substituents are large enough in size, they can sterically interfere with each other such that one conformer is greatly favored over the other. Allylic strain was first recognized in the literature in 1965 by Johnson and Malhotra. The authors were investigating cyclohexane conformations including endocyclic and exocylic double bonds when they noticed certain conformations were disfavored due to the geometry constraints caused by the double bond. Organic chemists capitalize on the rigidity resulting from allylic strain for use in asymmetric reactions.
Methylcyclohexane (cyclohexylmethane) is an organic compound with the molecular formula is CH3C6H11. Classified as saturated hydrocarbon, it is a colourless liquid with a faint odor. Methylcyclohexane is used as a solvent. It is mainly converted in naphtha reformers to toluene. Methylcyclohexane is also used in some correction fluids (such as White-Out) as a solvent.
Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.
The Flippin–Lodge angle is one of two angles used by organic and biological chemists studying the relationship between a molecule's chemical structure and ways that it reacts, for reactions involving "attack" of an electron-rich reacting species, the nucleophile, on an electron-poor reacting species, the electrophile. Specifically, the angles—the Bürgi–Dunitz, , and the Flippin–Lodge, —describe the "trajectory" or "angle of attack" of the nucleophile as it approaches the electrophile, in particular when the latter is planar in shape. This is called a nucleophilic addition reaction and it plays a central role in the biological chemistry taking place in many biosyntheses in nature, and is a central "tool" in the reaction toolkit of modern organic chemistry, e.g., to construct new molecules such as pharmaceuticals. Theory and use of these angles falls into the areas of synthetic and physical organic chemistry, which deals with chemical structure and reaction mechanism, and within a sub-specialty called structure correlation.
Carbohydrate conformation refers to the overall three-dimensional structure adopted by a carbohydrate (saccharide) molecule as a result of the through-bond and through-space physical forces it experiences arising from its molecular structure. The physical forces that dictate the three-dimensional shapes of all molecules—here, of all monosaccharide, oligosaccharide, and polysaccharide molecules—are sometimes summarily captured by such terms as "steric interactions" and "stereoelectronic effects".