Weerman degradation

Last updated

Weerman degradation, also named Weerman reaction, is a name reaction in organic chemistry. It is named after Rudolf Adrian Weerman, who discovered it in 1910. [1] In general, it is an organic reaction in carbohydrate chemistry in which amides are degraded by sodium hypochlorite, forming an aldehyde with one less carbon. [2] Some have regarded it as an extension of the Hofmann rearrangement. [3]

Contents

Degradation of α-hydroxy-substituted carbonic acid amides

The Weermann degradation could be executed with α-hydroxy-substituted carbonic acid amides. For example, sugar.

General reaction scheme

During the degradation of α-hydroxy-substituted carbonic acid amides, the carbon chain shortens by one carbon-atom. [2]

Weerman-Degradation Weermann-Abbau UOH V2.svg
Weerman-Degradation

The reaction proceeds very slowly at room temperature, therefore the reaction mixture is heated up to 60-65 °C.

Mechanism

The reaction mechanism is that of the related Hofmann degradation. [2]

Weermann degradation mechanism of Hydroxy-Carbonsaureamide Weermann-Abbau MOH V1.svg
Weermann degradation mechanism of Hydroxy-Carbonsäureamide

At first the carbonic acid amide (1) reacts with the sodium hypochlorite. After the separation of water and chloride an amine with a free bond is built 2. The intermediate (3) is generated by rearrangement. In the next step a hydrolysis takes place. Water is added at the carbon-atom with the number '1'. A hydroxylic group is generated. The last step is that an acidic amide is separated and the aldehyde (4) is generated.

Degradation of α,β-unsaturated carbonic acid amides

Additionally the Weerman degradation could be executed with α,β-unsaturated carbonic acid amides. For example, acrylamide.

General reaction scheme

During the degradation of α-hydroxy-substituted carbonic acid amides, the carbon chain shortens about one carbon-atom, too. [2]

Weermann degradation general unsattuered carbonic acid amides Weermann-Abbau Ubersicht allgemein.svg
Weermann degradation general unsattuered carbonic acid amides

The reaction is very slow at room temperature, therefore the reaction mixture is heated up to 60–65 °C.

Mechanism

The reaction mechanism is that of the related Hofmann degradation. [2]

Weermann degradation 1st unsattuered Weermann-Abbau Mungesattigt1 V2.svg
Weermann degradation 1st unsattuered

At first the carbonic acid amide (1) reacts with the sodium hypochlorite. After separate water and chloride an amine with a free bond is build 2. The intermediate (3) is generated by rearrangement. At this point two different mechanisms are possible. In the mechanism above two methanol molecules reacts with the intermediate. So is the compound (4) generated. After this carbon dioxide, water, ammonium and methanol are separated in different steps. At least it is protonated into an aldehyde (5).

Weermann degradation 2nd unsattuered Weermann-Abbau Mungesattigt2 V2.svg
Weermann degradation 2nd unsattuered

Until the intermediate (3) the mechanism is the same like above. Then only one methanol-atom is added 4. With a protonation water, methanol and carbon dioxide are separated. An ammonium ion (5) is generated. During the hydrolysis a hydroxylic group is built 6. An aldehyde (7) is generated by separating an ammonium ion.

Applications

One study demonstrated the direct oxidation of glucose to arabinose by the same sodium hypochlorite, skipping the aldonic acid and aldoamide steps. [4] [5] For example, the general degradation of D-gluconamide into D-arabinose:

Sugar example Weermann-Abbau Ubersicht Aldonsaureamid.svg
Sugar example

On top of that, the Weerman test could be used to show whether a hydroxylic group is beside the amido group. This reaction is only important in a historical sense because it is slow yielding and thus rarely used.

See also

Related Research Articles

Carboxylic acid Organic compound

A carboxylic acid is an organic acid that contains a carboxyl group (C(=O)OH) attached to an R-group. The general formula of a carboxylic acid is R−COOH or R−CO2H, with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

Ketone Class of organic compounds having structure RCOR

In chemistry, a ketone is a functional group with the structure R2C=O, where R can be a variety of carbon-containing substituents. Ketones contain a carbonyl group (a carbon-oxygen double bond). The simplest ketone is acetone (R = R' = methyl), with the formula CH3C(O)CH3. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids (e.g., testosterone), and the solvent acetone.

Aldehyde Type of carbonyl coumpound

In chemistry, an aldehyde is an organic compound containing a functional group with the structure −C(H)=O. The functional group itself is known as an aldehyde or formyl group. Aldehydes are common and play important roles in the technology and biological spheres.

Beckmann rearrangement

The Beckmann rearrangement, named after the German chemist Ernst Otto Beckmann (1853–1923), is a rearrangement of an oxime functional group to substituted amides. The rearrangement has also been successfully performed on haloimines and nitrones. Cyclic oximes and haloimines yield lactams.

Oxime

An oxime is a chemical compound belonging to the imines, with the general formula RR'C=NOH, where R is an organic side-chain and R' may be hydrogen, forming an aldoxime, or another organic group, forming a ketoxime. O-substituted oximes form a closely related family of compounds. Amidoximes are oximes of amides with general structure R1C(=NOH)NR2R3.

Aldol condensation

An aldol condensation is a condensation reaction in organic chemistry in which an enol or an enolate ion reacts with a carbonyl compound to form a β-hydroxyaldehyde or β-hydroxyketone, followed by dehydration to give a conjugated enone.

Oxazole Chemical compound

Oxazole is the parent compound for a vast class of heterocyclic aromatic organic compounds. These are azoles with an oxygen and a nitrogen separated by one carbon. Oxazoles are aromatic compounds but less so than the thiazoles. Oxazole is a weak base; its conjugate acid has a pKa of 0.8, compared to 7 for imidazole.

The Hofmann rearrangement is the organic reaction of a primary amide to a primary amine with one fewer carbon atom. The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate. The reaction can form a wide range of products, including alkyl and aryl amines.

The Pummerer rearrangement is an organic reaction whereby an alkyl sulfoxide rearranges to an α-acyloxy–thioether (monothioacetal-ester) in the presence of acetic anhydride.

Dichlorocarbene is the reactive intermediate with chemical formula CCl2. Although this chemical species has not been isolated, it is a common intermediate in organic chemistry, being generated from chloroform. This bent diamagnetic molecule rapidly inserts into other bonds.

Curtius rearrangement

The Curtius rearrangement, first defined by Theodor Curtius in 1885, is the thermal decomposition of an acyl azide to an isocyanate with loss of nitrogen gas. The isocyanate then undergoes attack by a variety of nucleophiles such as water, alcohols and amines, to yield a primary amine, carbamate or urea derivative respectively. Several reviews have been published.

The benzilic acid rearrangement is formally the 1,2-rearrangement of 1,2-diketones to form α-hydroxy–carboxylic acids using a base. This reaction receives its name from the reaction of benzil with potassium hydroxide to form benzilic acid. First performed by Justus von Liebig in 1838, it is the first reported example of a rearrangement reaction. It has become a classic reaction in organic synthesis and has been reviewed many times before. It can be viewed as an intramolecular disproportionation reaction, as one carbon center is oxidized while the other is reduced.

Darzens reaction

The Darzens reaction is the chemical reaction of a ketone or aldehyde with an α-haloester in the presence of a base to form an α,β-epoxy ester, also called a "glycidic ester". This reaction was discovered by the organic chemist Auguste Georges Darzens in 1904.

In carbohydrate chemistry, the Lobry de Bruyn–Van Ekenstein transformation also known as the Lobry de Bruyn–Alberda van Ekenstein transformation is the base or acid catalyzed transformation of an aldose into the ketose isomer or vice versa, with a tautomeric enediol as reaction intermediate. Ketoses may be transformed into 3-ketoses, etcetera. The enediol is also an intermediate for the epimerization of an aldose or ketose.

Wohl degradation

The Wohl degradation in carbohydrate chemistry is a chain contraction method for aldoses. The classic example is the conversion of glucose to arabinose as shown below. The reaction is named after the German chemist Alfred Wohl (1863–1939).

Schmidt reaction

The Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually a aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen. It is named after Karl Friedrich Schmidt (1887–1971), who first reported it in 1924 by successfully converting benzophenone and hydrazoic acid to benzanilide. Surprisingly, the intramolecular reaction was not reported until 1991 but has become important in the synthesis of natural products.

The Bergmann degradation is a series of chemical reactions designed to remove a single amino acid from the carboxylic acid (C-terminal) end of a peptide. First demonstrated by Max Bergmann in 1934, it is a rarely used method for sequencing peptides. The later developed Edman degradation is an improvement upon the Bergmann degradation, instead cleaving the N-terminal amino acid of peptides to produce a hydantoin containing the desired amino acid.

The Abramov reaction is the related conversions of trialkyl to α-hydroxy phosphonates by the addition to carbonyl compounds. In terms of mechanism, the reaction involves attack of the nucleophilic phosphorus atom on the carbonyl carbon. It was named after the Russian chemist Vasilii Semenovich Abramov (1904–1968) in 1957.

Heteroatom-promoted lateral lithiation is the site-selective replacement of a benzylic hydrogen atom for lithium for the purpose of further functionalization. Heteroatom-containing substituents may direct metalation to the benzylic site closest to the heteroatom or increase the acidity of the ring carbons via an inductive effect.

In organic chemistry, the Jocic reaction, also called the Jocic–Reeve reaction is a name reaction that generates α-substituted carboxylic acids from trichloromethylcarbinols and corresponding nucleophiles in the presence of sodium hydroxide. The reaction involves nucleophilic displacement of the hydroxyl group in a 1,1,1-trichloro-2-hydroxyalkyl structure with concomitant conversion of the trichloromethyl portion to a carboxylic acid or similar functional group.

References

  1. Weerman, R. A. (3 September 2010). "Sur une synthèse d'aldéhydes et de l'indol". Recueil des Travaux Chimiques des Pays-Bas et de la Belgique. 29 (1–2): 18–21. doi:10.1002/recl.19100290104.
  2. 1 2 3 4 5 Wang, Zerong (2009). Comprehensive organic name reactions and reagents. Hoboken, N.J.: John Wiley. pp. 2946–2950. ISBN   978-0-471-70450-8.
  3. Arcus, C. L.; Greenwood, D. B. (1953). "398. The Hofmann reaction with α- and β-hydroxy-amides: reactions of the intermediate isocyanates". Journal of the Chemical Society (Resumed): 1937–1940. doi:10.1039/JR9530001937.
  4. editor, Martha Windholz, editor ; Susan Budavari, associate editor ; Lorraine Y. Stroumtsos, assistant editor ; Margaret Noether Fertig, assistant (1976). The Merck index : an encyclopedia of chemicals and drugs (9th ed.). Rahway, N.J.: Merck. pp. ONR-92. ISBN   0-911910-26-3.CS1 maint: extra text: authors list (link)
  5. Weerman, R. A. (3 September 2010). "L'action de l'hypochlorite de sodium sur les amides d'α-hydroxy-acides et de polyhydroxy-acides, ayant un groupe hydroxyle à la place α. Nouvelle méthode de dégradation des sucres". Recueil des Travaux Chimiques des Pays-Bas et de la Belgique. 37 (1): 16–22. doi:10.1002/recl.19180370103.