Negishi coupling

Last updated
Negishi coupling
Named after Ei-ichi Negishi
Reaction type Coupling reaction
Identifiers
Organic Chemistry Portal negishi-coupling
RSC ontology ID RXNO:0000088

The Negishi coupling is a widely employed transition metal catalyzed cross-coupling reaction. The reaction couples organic halides or triflates with organozinc compounds, forming carbon-carbon bonds (C-C) in the process. A palladium (0) species is generally utilized as the catalyst, though nickel is sometimes used. [1] [2] A variety of nickel catalysts in either Ni0 or NiII oxidation state can be employed in Negishi cross couplings such as Ni(PPh3)4, Ni(acac)2, Ni(COD)2 etc. [3] [4] [5]

Contents

NegishiScheme1.png

Palladium catalysts in general have higher chemical yields and higher functional group tolerance.

The Negishi coupling finds common use in the field of total synthesis as a method for selectively forming C-C bonds between complex synthetic intermediates. The reaction allows for the coupling of sp3, sp2, and sp carbon atoms, (see orbital hybridization) which make it somewhat unusual among the palladium-catalyzed coupling reactions. Organozincs are moisture and air sensitive, so the Negishi coupling must be performed in an oxygen and water free environment, a fact that has hindered its use relative to other cross-coupling reactions that require less robust conditions (i.e. Suzuki reaction). However, organozincs are more reactive than both organostannanes and organoborates which correlates to faster reaction times.

The reaction is named after Ei-ichi Negishi who was a co-recipient of the 2010 Nobel Prize in Chemistry for the discovery and development of this reaction.

Negishi and coworkers originally investigated the cross-coupling of organoaluminum reagents in 1976 initially employing Ni and Pd as the transition metal catalysts, but noted that Ni resulted in the decay of stereospecifity whereas Pd did not. [6] Transitioning from organoaluminum species to organozinc compounds Negishi and coworkers reported the use of Pd complexes in organozinc coupling reactions and carried out methods studies, eventually developing the reaction conditions into those commonly utilized today. [7] Alongside Richard F. Heck and Akira Suzuki, El-ichi Negishi was a co-recipient of the Nobel Prize in Chemistry in 2010, for his work on "palladium-catalyzed cross couplings in organic synthesis".

Reaction mechanism

The reaction mechanism is thought to proceed via a standard Pd catalyzed cross-coupling pathway, starting with a Pd(0) species, which is oxidized to Pd(II) in an oxidative addition step involving the organohalide species. [8] This step proceeds with aryl, vinyl, alkynyl, and acyl halides, acetates, or triflates, with substrates following standard oxidative addition relative rates (I>OTf>Br>>Cl). [9]

Scheme2Catcycle.png

The actual mechanism of oxidative addition is unresolved, though there are two likely pathways. One pathway is thought to proceed via an SN2 like mechanism resulting in inverted stereochemistry. The other pathway proceeds via concerted addition and retains stereochemistry.

Mechanisms of oxidative addition Scheme3oxadd.png
Mechanisms of oxidative addition

Though the additions are cis- the Pd(II) complex rapidly isomerizes to the trans- complex. [10]

Scheme4cistrans.png

Next, the transmetalation step occurs where the organozinc reagent exchanges its organic substituent with the halide in the Pd(II) complex, generating the trans- Pd(II) complex and a zinc halide salt. The organozinc substrate can be aryl, vinyl, allyl, benzyl, homoallyl, or homopropargyl. [8] Transmetalation is usually rate limiting and a complete mechanistic understanding of this step has not yet been reached though several studies have shed light on this process. Alkylzinc species form higher-order zincate species prior to transmetalation whereas arylzinc species do not. [11] ZnXR and ZnR2 can both be used as reactive reagents, and Zn is known to prefer four coordinate complexes, which means solvent coordinated Zn complexes, such as ZnXR(solvent)2 cannot be ruled out a priori. [12] Studies indicate competing equilibriums exist between cis- and trans- bis alkyl organopalladium complexes, but that the only productive intermediate is the cis complex. [13] [14]

Generation of active species via cis/trans isomerism Scheme5redelim.png
Generation of active species via cis/trans isomerism

The last step in the catalytic pathway of the Negishi coupling is reductive elimination, which is thought to proceed via a three coordinate transition state, yielding the coupled organic product and regenerating the Pd(0) catalyst. For this step to occur, the aforementioned cis- alkyl organopalladium complex must be formed. [15]

Mechanism of reductive elimination Scheme6redelim2.png
Mechanism of reductive elimination

Both organozinc halides and diorganozinc compounds can be used as starting materials. In one model system it was found that in the transmetalation step the former give the cis-adduct R-Pd-R' resulting in fast reductive elimination to product while the latter gives the trans-adduct which has to go through a slow trans-cis isomerization first. [13]

A common side reaction is homocoupling. In one Negishi model system the formation of homocoupling was found to be the result of a second transmetalation reaction between the diarylmetal intermediate and arylmetal halide: [16]

Ar–Pd–Ar' + Ar'–Zn–X → Ar'–Pd–Ar' + Ar–Zn–X
Ar'–Pd–Ar' → Ar'–Ar' + Pd(0) (homocoupling)
Ar–Zn–X + H2O → Ar–H + HO–Zn–X (reaction accompanied by dehalogenation)


Nickel catalyzed systems can operate under different mechanisms depending on the coupling partners. Unlike palladium systems which involve only Pd0 or PdII, nickel catalyzed systems can involve nickel of different oxidation states. [17] Both systems are similar in that they involve similar elementary steps: oxidative addition, transmetalation, and reductive elimination. Both systems also have to address issues of β-hydride elimination and difficult oxidative addition of alkyl electrophiles. [18]

For unactivated alkyl electrophiles, one possible mechanism is a transmetalation first mechanism. In this mechanism, the alkyl zinc species would first transmetalate with the nickel catalyst.  Then the nickel would abstract the halide from the alkyl halide resulting in the alkyl radical and oxidation of nickel after addition of the radical. [19]

NickelMechanism.png

One important factor when contemplating the mechanism of a nickel catalyzed cross coupling is that reductive elimination is facile from NiIII species, but very difficult from NiII species.  Kochi and Morrell provided evidence for this by isolating NiII complex Ni(PEt3)2(Me)(o-tolyl), which did not undergo reductive elimination quickly enough to be involved in this elementary step. [20]

Scope

The Negishi coupling has been applied the following illustrative syntheses:

Structure of hexaferrocenylbenzene, C6[(e -C5H4)Fe(e -C5H5)]6 Hexaferrocenylbenzene-3D-sticks.png
Structure of hexaferrocenylbenzene, C6[(η -C5H4)Fe(η -C5H5)]6

Negishi coupling has been applied in the synthesis of hexaferrocenylbenzene: [24]

Hexaferrocenylbenzene.png

with hexaiodidobenzene, diferrocenylzinc and tris(dibenzylideneacetone)dipalladium(0) in tetrahydrofuran. The yield is only 4% signifying substantial crowding around the aryl core.

In a novel modification palladium is first oxidized by the haloketone 2-chloro-2-phenylacetophenone1 and the resulting palladium OPdCl complex then accepts both the organozinc compound 2 and the organotin compound 3 in a double transmetalation: [25]

DoubleTransmetallationcrosscoupling.png

Examples of nickel catalyzed Negishi couplings include sp2-sp2, sp2-sp3, and sp3-sp3 systems.  In the system first studied by Negishi, aryl-aryl cross coupling was catalyzed by Ni(PPh3)4 generated in situ through reduction of Ni(acac)2 with PPh3 and (i-Bu)2AlH. [26]

Picture1ArArCC.png

Variations have also been developed to allow for the cross-coupling of aryl and alkenyl partners.  In the variation developed by Knochel et al, aryl zinc bromides were reacted with vinyl triflates and vinyl halides. [27]

ArSP2CC.png

Reactions between sp3-sp3 centers are often more difficult;  however, adding an unsaturated ligand with an electron withdrawing group as a cocatalyst improved the yield in some systems.  It is believed that added coordination from the unsaturated ligand favors reductive elimination over β-hydride elimination. [28] [29] This also works in some alkyl-aryl systems. [30]

Several asymmetric variants exist and many utilize Pybox ligands. [31] [32] [33]

Industrial applications

The Negishi coupling is not employed as frequently in industrial applications as its cousins the Suzuki reaction and Heck reaction, mostly as a result of the water and air sensitivity of the required aryl or alkyl zinc reagents. [34] [35] In 2003 Novartis employed a Negishi coupling in the manufacture of PDE472, a phosphodiesterase type 4D inhibitor, which was being investigated as a drug lead for the treatment of asthma. [36] The Negishi coupling was used as an alternative to the Suzuki reaction providing improved yields, 73% on a 4.5 kg scale, of the desired benzodioxazole synthetic intermediate. [37]

Synthesis of benzodioxazole synthetic intermediate Scheme7natprod1.png
Synthesis of benzodioxazole synthetic intermediate

Applications in total synthesis

Where the Negishi coupling is rarely used in industrial chemistry, a result of the aforementioned water and oxygen sensitivity, it finds wide use in the field of natural products total synthesis. The increased reactivity relative to other cross-coupling reactions makes the Negishi coupling ideal for joining complex intermediates in the synthesis of natural products. [8] Additionally, Zn is more environmentally friendly than other metals such as Sn used in the Stille coupling. The Negishi coupling historically is not used as much as the Stille or Suzuki coupling. When it comes to fragment-coupling processes the Negishi coupling is particularly useful, especially when compared to the aforementioned Stille and Suzuki coupling reactions. [38] The major drawback of the Negishi coupling, aside from its water and oxygen sensitivity, is its relative lack of functional group tolerance when compared to other cross-coupling reactions. [39]

(−)-stemoamide is a natural product found in the root extracts of ‘’Stemona tuberosa’’. These extracts have been used Japanese and Chinese folk medicine to treat respiratory disorders, and (−)-stemoamide is also an anthelminthic. Somfai and coworkers employed a Negishi coupling in their synthesis of (−)-stemoamide. [40] The reaction was implemented mid-synthesis, forming an sp3-sp2 c-c bond between β,γ-unsaturated ester and an intermediate diene 4 with a 78% yield of product 5. Somfai completed the stereoselective total synthesis of (−)-stemoamide in 12-steps with a 20% overall yield.

Synthesis of (-)-stemoamide Scheme8natprod2.png
Synthesis of (−)-stemoamide

Kibayashi and coworkers utilized the Negishi coupling in the total synthesis of Pumiliotoxin B. Pumiliotoxin B is one of the major toxic alkaloids isolated from Dendrobates pumilio, a Panamanian poison frog. These toxic alkaloids display modulatory effects on voltage-dependent sodium channels, resulting in cardiotonic and myotonic activity. [41] Kibayashi employed the Negishi coupling late stage in the synthesis of Pumiliotoxin B, coupling a homoallylic sp3 carbon on the zinc alkylidene indolizidine 6 with the (E)-vinyl iodide 7 with a 51% yield. The natural product was then obtained after deprotection. [42]

Synthesis of Pumiliotoxin B Scheme9natprod3.png
Synthesis of Pumiliotoxin B

δ-trans-tocotrienoloic acid isolated from the plant, Chrysochlamys ulei, is a natural product shown to inhibit DNA polymerase β (pol β), which functions to repair DNA via base excision. Inhibition of pol B in conjunction with other chemotherapy drugs may increase the cytotoxicity of these chemotherapeutics, leading to lower effective dosages. The Negishi coupling was implemented in the synthesis of δ-trans-tocotrienoloic acid by Hecht and Maloney coupling the sp3 homopropargyl zinc reagent 8 with sp2 vinyl iodide 9. [43] The reaction proceeded with quantitative yield, coupling fragments mid-synthesis en route to the stereoselectively synthesized natural product δ-trans-tocotrienoloic acid.

Synthesis of d-trans-tocotrienoloic acid Scheme10natprod4.png
Synthesis of δ-trans-tocotrienoloic acid

Smith and Fu demonstrated that their method to couple secondary nucleophiles with secondary alkyl electrophiles could be applied to the formal synthesis of α-cembra-2,7,11-triene-4,6-diol, a target with antitumor activity.  They achieved a 61% yield on a gram scale using their method to install an iso-propyl group.  This method would be highly adaptable in this application for diversification and installing other alkyl groups to enable structure-activbity relationship (SAR) studies. [44]

Synth1.png

Kirschning and Schmidt applied nickel catalyzed negishi cross-coupling to the first total synthesis of carolactone. In this application, they achieved 82% yield and dr = 10:1. [45]

Synth2.png

Preparation of organozinc precursors

Alkylzinc reagents can be accessed from the corresponding alkyl bromides using iodine in dimethylacetamide (DMAC). [46] The catalytic I2 serves to activate the zinc towards nucleophilic addition.

Scheme11alkylzinc.png

Aryl zincs can be synthesized using mild reaction conditions via a Grignard like intermediate. [47]

Organozincs can also be generated in situ and used in a one pot procedure as demonstrated by Knochel et al. [48]

RZnXscheme.png

Further reading

See also

Related Research Articles

The Heck reaction is the chemical reaction of an unsaturated halide with an alkene in the presence of a base and a palladium catalyst to form a substituted alkene. It is named after Tsutomu Mizoroki and Richard F. Heck. Heck was awarded the 2010 Nobel Prize in Chemistry, which he shared with Ei-ichi Negishi and Akira Suzuki, for the discovery and development of this reaction. This reaction was the first example of a carbon-carbon bond-forming reaction that followed a Pd(0)/Pd(II) catalytic cycle, the same catalytic cycle that is seen in other Pd(0)-catalyzed cross-coupling reactions. The Heck reaction is a way to substitute alkenes.

The Stille reaction is a chemical reaction widely used in organic synthesis. The reaction involves the coupling of two organic groups, one of which is carried as an organotin compound (also known as organostannanes). A variety of organic electrophiles provide the other coupling partner. The Stille reaction is one of many palladium-catalyzed coupling reactions.

The Suzuki reaction or Suzuki coupling is an organic reaction that uses a palladium complex catalyst to cross-couple a boronic acid to an organohalide. It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of noble metal catalysis in organic synthesis. This reaction is sometimes telescoped with the related Miyaura borylation; the combination is the Suzuki–Miyaura reaction. It is widely used to synthesize polyolefins, styrenes, and substituted biphenyls.

The Sonogashira reaction is a cross-coupling reaction used in organic synthesis to form carbon–carbon bonds. It employs a palladium catalyst as well as copper co-catalyst to form a carbon–carbon bond between a terminal alkyne and an aryl or vinyl halide.

Organopalladium chemistry is a branch of organometallic chemistry that deals with organic palladium compounds and their reactions. Palladium is often used as a catalyst in the reduction of alkenes and alkynes with hydrogen. This process involves the formation of a palladium-carbon covalent bond. Palladium is also prominent in carbon-carbon coupling reactions, as demonstrated in tandem reactions.

The Hiyama coupling is a palladium-catalyzed cross-coupling reaction of organosilanes with organic halides used in organic chemistry to form carbon–carbon bonds. This reaction was discovered in 1988 by Tamejiro Hiyama and Yasuo Hatanaka as a method to form carbon-carbon bonds synthetically with chemo- and regioselectivity. The Hiyama coupling has been applied to the synthesis of various natural products.

The Corey–House synthesis (also called the Corey–Posner–Whitesides–House reaction and other permutations) is an organic reaction that involves the reaction of a lithium diorganylcuprate () with an organic halide or pseudohalide () to form a new alkane, as well as an ill-defined organocopper species and lithium (pseudo)halide as byproducts.

<span class="mw-page-title-main">Organozinc chemistry</span>

Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.

Transmetalation (alt. spelling: transmetallation) is a type of organometallic reaction that involves the transfer of ligands from one metal to another. It has the general form:

A carbometallation is any reaction where a carbon-metal bond reacts with a carbon-carbon π-bond to produce a new carbon-carbon σ-bond and a carbon-metal σ-bond. The resulting carbon-metal bond can undergo further carbometallation reactions or it can be reacted with a variety of electrophiles including halogenating reagents, carbonyls, oxygen, and inorganic salts to produce different organometallic reagents. Carbometallations can be performed on alkynes and alkenes to form products with high geometric purity or enantioselectivity, respectively. Some metals prefer to give the anti-addition product with high selectivity and some yield the syn-addition product. The outcome of syn and anti- addition products is determined by the mechanism of the carbometallation.

In organic chemistry, the Kumada coupling is a type of cross coupling reaction, useful for generating carbon–carbon bonds by the reaction of a Grignard reagent and an organic halide. The procedure uses transition metal catalysts, typically nickel or palladium, to couple a combination of two alkyl, aryl or vinyl groups. The groups of Robert Corriu and Makoto Kumada reported the reaction independently in 1972.

The Fukuyama coupling is a coupling reaction taking place between a thioester and an organozinc halide in the presence of a palladium catalyst. The reaction product is a ketone. This reaction was discovered by Tohru Fukuyama et al. in 1998.

In organic chemistry, a cross-coupling reaction is a reaction where two different fragments are joined. Cross-couplings are a subset of the more general coupling reactions. Often cross-coupling reactions require metal catalysts. One important reaction type is this:

<span class="mw-page-title-main">PEPPSI</span> Group of chemical compounds

PEPPSI is an abbreviation for pyridine-enhanced precatalyst preparation stabilization and initiation. It refers to a family of commercially available palladium catalysts developed around 2005 by Prof. Michael G. Organ and co-workers at York University, which can accelerate various carbon-carbon and carbon-heteroatom bond forming cross-coupling reactions. In comparison to many alternative palladium catalysts, Pd-PEPPSI-type complexes are stable to air and moisture and are relatively easy to synthesize and handle.

<span class="mw-page-title-main">Palladium–NHC complex</span>

In organometallic chemistry, palladium-NHC complexes are a family of organopalladium compounds in which palladium forms a coordination complex with N-heterocyclic carbenes (NHCs). They have been investigated for applications in homogeneous catalysis, particularly cross-coupling reactions.

<span class="mw-page-title-main">Stannatrane</span>

A stannatrane is a tin-based atrane belonging to the larger class of organostannanes. Though the term stannatrane is often used to refer to the more commonly employed carbastannatrane, azastannatranes have also been synthesized. Stannatrane reagents offer highly selective methods for the incorporation of "R" substituents in complex molecules for late-stage diversification. These reagents differ from their tetraalkyl organostannane analogues in that there is no participation of dummy ligands in the transmetalation step, offering selective alkyl transfer in Stille Coupling reactions. These transmetalating agents are known to be air- and moisture-stable, as well as generally less toxic than their tetraalkyl counterparts.

Dialkylbiaryl phosphine ligands are phosphine ligands that are used in homogeneous catalysis. They have proved useful in Buchwald-Hartwig amination and etherification reactions as well as Negishi cross-coupling, Suzuki-Miyaura cross-coupling, and related reactions. In addition to these Pd-based processes, their use has also been extended to transformations catalyzed by nickel, gold, silver, copper, rhodium, and ruthenium, among other transition metals.

Cross electrophile coupling is a type of cross-coupling reaction that occurs between two electrophiles often catalyzed by transition metal catalyst(s). Unlike conventional cross-coupling reactions of an electrophile with an organometallic reagent, the coupling partners in cross electrophile coupling reactions are both electrophiles. Generally, additional reductant to regenerate active catalyst is needed in this reaction.

Miyaura borylation, also known as the Miyaura borylation reaction, is a named reaction in organic chemistry that allows for the generation of boronates from vinyl or aryl halides with the cross-coupling of bis(pinacolato)diboron in basic conditions with a catalyst such as PdCl2(dppf). The resulting borylated products can be used as coupling partners for the Suzuki reaction.

The Murahashi Coupling is a cross coupling reaction. The coupling partners are organolithiums and organic halides. Transition metal catalysts are required. The reaction was first reported by Shun-Ichi Murahashi in 1974. This reaction is notable for using organolithiums as opposed to other cross-coupling reactions which utilize various metal-carbon compounds. Since the production of these other coupling reagents relies heavily upon organolithiums, in bypassing these intermediates, this process is much more efficient. It has further been shown that the Murahashi reaction proceeds with greater selectivity, faster reaction times, and lower reaction temperatures than other similar coupling reactions while maintaining similar or higher yields.

References

  1. King AO, Okukado N, Negishi Ei (1977). "Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides". Journal of the Chemical Society, Chemical Communications (19): 683. doi:10.1039/C39770000683.
  2. Kürti L, Czakó B (2007). Strategic applications of named reactions in organic synthesis : background and detailed mechanisms ; 250 named reactions. Amsterdam: Elsevier Academic Press. ISBN   978-0-12-429785-2.
  3. Zhou, Jianrong (Steve); Fu, Gregory C. (December 2003). "Cross-Couplings of Unactivated Secondary Alkyl Halides: Room-Temperature Nickel-Catalyzed Negishi Reactions of Alkyl Bromides and Iodides". Journal of the American Chemical Society. 125 (48): 14726–14727. doi:10.1021/ja0389366. ISSN   0002-7863. PMID   14640646.
  4. Negishi, Eiichi; King, Anthony O.; Okukado, Nobuhisa (1977-05-01). "Selective carbon-carbon bond formation via transition metal catalysis. 3. A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium-catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides". The Journal of Organic Chemistry. 42 (10): 1821–1823. doi:10.1021/jo00430a041. ISSN   0022-3263.
  5. Gavryushin, Andrei; Kofink, Christiane; Manolikakes, Georg; Knochel, Paul (2005-10-01). "Efficient Cross-Coupling of Functionalized Arylzinc Halides Catalyzed by a Nickel Chloride−Diethyl Phosphite System". Organic Letters. 7 (22): 4871–4874. doi:10.1021/ol051615+. ISSN   1523-7060. PMID   16235910.
  6. Baba S, Negishi E (1976). "A novel stereospecific alkenyl-alkenyl cross-coupling by a palladium- or nickel-catalyzed reaction of alkenylalanes with alkenyl halides". Journal of the American Chemical Society. 98 (21): 6729–6731. doi:10.1021/ja00437a067.
  7. Negishi E, King AO, Okukado N (1977). "Selective carbon-carbon bond formation via transition metal catalysis. 3. A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium-catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides". The Journal of Organic Chemistry. 42 (10): 1821–1823. doi:10.1021/jo00430a041.
  8. 1 2 3 Kurti L, Czako B (2005). Strategic Applications of Named Reactions in Organic Synthesis. New York: Elsevier Academic Press.
  9. Andrew G Myers Research Group. "Chemistry 115 Handouts". Boston, Massachusetts: Harvard University Department of Chemistry.
  10. Casado AL, Espinet P (1998). "On the Configuration Resulting from Oxidative Addition of RX to Pd(PPh3)4 and the Mechanism of the cis-to-trans Isomerization of [PdRX(PPh3)2] Complexes (R = Aryl, X = Halide)". Organometallics. 17 (5): 954–959. doi:10.1021/om9709502.
  11. McCann LC, Hunter HN, Clyburne JA, Organ MG (July 2012). "Higher-order zincates as transmetalators in alkyl-alkyl negishi cross-coupling". Angewandte Chemie. 51 (28): 7024–7. doi:10.1002/anie.201203547. PMID   22685029.
  12. García-Melchor M, Braga AA, Lledós A, Ujaque G, Maseras F (November 2013). "Computational perspective on Pd-catalyzed C-C cross-coupling reaction mechanisms". Accounts of Chemical Research. 46 (11): 2626–34. doi:10.1021/ar400080r. PMID   23848308.
  13. 1 2 Casares JA, Espinet P, Fuentes B, Salas G (March 2007). "Insights into the mechanism of the Negishi reaction: ZnRX versus ZnR2 reagents". Journal of the American Chemical Society. 129 (12): 3508–9. doi:10.1021/ja070235b. PMID   17328551.
  14. Fuentes B, García-Melchor M, Lledós A, Maseras F, Casares JA, Ujaque G, Espinet P (August 2010). "Palladium round trip in the Negishi coupling of trans-[PdMeCl(PMePh2)2] with ZnMeCl: an experimental and DFT study of the transmetalation step". Chemistry: A European Journal. 16 (29): 8596–9. doi:10.1002/chem.201001332. PMID   20623568.
  15. Crabtree R (2005). The Organometallic Chemistry of the Transition Metals. Vol. 4. Hoboken, NJ: John Wiley and Sons Inc.
  16. Liu Q, Lan Y, Liu J, Li G, Wu YD, Lei A (July 2009). "Revealing a second transmetalation step in the Negishi coupling and its competition with reductive elimination: improvement in the interpretation of the mechanism of biaryl syntheses". Journal of the American Chemical Society. 131 (29): 10201–10. doi:10.1021/ja903277d. PMID   19572717. S2CID   58240.
  17. Phapale, Vilas B.; Cárdenas, Diego J. (2009-05-27). "Nickel-catalysed Negishi cross-coupling reactions: scope and mechanisms". Chemical Society Reviews. 38 (6): 1598–1607. doi:10.1039/B805648J. ISSN   1460-4744. PMID   19587955.
  18. Zhou, Jianrong (Steve); Fu, Gregory C. (December 2003). "Cross-Couplings of Unactivated Secondary Alkyl Halides: Room-Temperature Nickel-Catalyzed Negishi Reactions of Alkyl Bromides and Iodides". Journal of the American Chemical Society. 125 (48): 14726–14727. doi:10.1021/ja0389366. ISSN   0002-7863. PMID   14640646.
  19. Schley, Nathan D.; Fu, Gregory C. (2014-11-26). "Nickel-Catalyzed Negishi Arylations of Propargylic Bromides: A Mechanistic Investigation". Journal of the American Chemical Society. 136 (47): 16588–16593. doi:10.1021/ja508718m. ISSN   0002-7863. PMC   4277758 . PMID   25402209.
  20. Morrell, Dennis G.; Kochi, Jay K. (1975-12-01). "Mechanistic studies of nickel catalysis in the cross coupling of aryl halides with alkylmetals. Role of arylalkylnickel(II) species as intermediates". Journal of the American Chemical Society. 97 (25): 7262–7270. doi:10.1021/ja00858a011. ISSN   0002-7863.
  21. Adam P. Smith, Scott A. Savage, J. Christopher Love, and Cassandra L. Fraser (2004). "Synthesis of 4-, 5-, and 6-methyl-2,2'-bipyridine by a Negishi cross-coupling strategy: 5-methyl-2,2'-bipyridine". Organic Syntheses {{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 10, p. 517.
  22. Ei-ichi Negishi, Tamotsu Takahashi, and Anthony O. King (1993). "Synthesis of biaryls via palladium-catalyzed cross-coupling: 2-methyl-4'-nitrobiphenyl". Organic Syntheses {{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 8, p. 430.
  23. Ei-ichi Negishi, Tamotsu Takahashi, and Shigeru Baba (1993). "Palladium-catalyzed synthesis of conjugated dienes". Organic Syntheses {{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 8, p. 295.
  24. Yu Y, Bond AD, Leonard PW, Lorenz UJ, Timofeeva TV, Vollhardt KP, Whitener GD, Yakovenko AA (June 2006). "Hexaferrocenylbenzene". Chemical Communications (24): 2572–4. doi:10.1039/b604844g. PMID   16779481.
  25. Zhao Y, Wang H, Hou X, Hu Y, Lei A, Zhang H, Zhu L (November 2006). "Oxidative cross-coupling through double transmetallation: surprisingly high selectivity for palladium-catalyzed cross-coupling of alkylzinc and alkynylstannanes". Journal of the American Chemical Society. 128 (47): 15048–9. doi:10.1021/ja0647351. PMID   17117830.
  26. Negishi, Eiichi; King, Anthony O.; Okukado, Nobuhisa (1977-05-01). "Selective carbon-carbon bond formation via transition metal catalysis. 3. A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium-catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides". The Journal of Organic Chemistry. 42 (10): 1821–1823. doi:10.1021/jo00430a041. ISSN   0022-3263.
  27. Gavryushin, Andrei; Kofink, Christiane; Manolikakes, Georg; Knochel, Paul (2005-10-01). "Efficient Cross-Coupling of Functionalized Arylzinc Halides Catalyzed by a Nickel Chloride−Diethyl Phosphite System". Organic Letters. 7 (22): 4871–4874. doi:10.1021/ol051615+. ISSN   1523-7060. PMID   16235910.
  28. Giovannini, Riccardo; Stüdemann, Thomas; Dussin, Gaelle; Knochel, Paul (1998). "An Efficient Nickel-Catalyzed Cross-Coupling Between sp3 Carbon Centers". Angewandte Chemie International Edition. 37 (17): 2387–2390. doi:10.1002/(SICI)1521-3773(19980918)37:17<2387::AID-ANIE2387>3.0.CO;2-M. ISSN   1521-3773. PMID   29710957.
  29. Jensen, Anne Eeg; Knochel, Paul (2002-01-01). "Nickel-Catalyzed Cross-Coupling between Functionalized Primary or Secondary Alkylzinc Halides and Primary Alkyl Halides". The Journal of Organic Chemistry. 67 (1): 79–85. doi:10.1021/jo0105787. ISSN   0022-3263. PMID   11777442.
  30. Giovannini, Riccardo; Knochel, Paul (1998-11-01). "Ni(II)-Catalyzed Cross-Coupling between Polyfunctional Arylzinc Derivatives and Primary Alkyl Iodides". Journal of the American Chemical Society. 120 (43): 11186–11187. doi:10.1021/ja982520o. ISSN   0002-7863.
  31. Fischer, Christian; Fu, Gregory C. (April 2005). "Asymmetric Nickel-Catalyzed Negishi Cross-Couplings of Secondary α-Bromo Amides with Organozinc Reagents". Journal of the American Chemical Society. 127 (13): 4594–4595. doi:10.1021/ja0506509. ISSN   0002-7863. PMID   15796523.
  32. Son, Sunghee; Fu, Gregory C. (2008-03-01). "Nickel-Catalyzed Asymmetric Negishi Cross-Couplings of Secondary Allylic Chlorides with Alkylzincs". Journal of the American Chemical Society. 130 (9): 2756–2757. doi:10.1021/ja800103z. ISSN   0002-7863. PMID   18257579.
  33. Phapale, Vilas B.; Buñuel, Elena; García-Iglesias, Miguel; Cárdenas, Diego J. (2007). "Ni-Catalyzed Cascade Formation of C(sp3)C(sp3) Bonds by Cyclization and Cross-Coupling Reactions of Iodoalkanes with Alkyl Zinc Halides". Angewandte Chemie International Edition. 46 (46): 8790–8795. doi:10.1002/anie.200702528. ISSN   1521-3773. PMID   17918274.
  34. Johansson Seechurn CC, Kitching MO, Colacot TJ, Snieckus V (May 2012). "Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize". Angewandte Chemie. 51 (21): 5062–85. doi:10.1002/anie.201107017. PMID   22573393.
  35. Sase S, Jaric M, Metzger A, Malakhov V, Knochel P (September 2008). "One-pot Negishi cross-coupling reactions of in situ generated zinc reagents with aryl chlorides, bromides, and triflates". The Journal of Organic Chemistry. 73 (18): 7380–2. doi:10.1021/jo801063c. PMID   18693766.
  36. Manley PW, Acemoglu M, Marterer W, Pachinger W (2003). "Large-Scale Negishi Coupling as Applied to the Synthesis of PDE472, an Inhibitor of Phosphodiesterase Type 4D". Organic Process Research & Development. 7 (3): 436–445. doi:10.1021/op025615q.
  37. Torborg C, Beller M (2009). "Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries". Advanced Synthesis & Catalysis. 351 (18): 3027–3043. doi:10.1002/adsc.200900587.
  38. Nicolaou KC, Bulger PG, Sarlah D (July 2005). "Palladium-catalyzed cross-coupling reactions in total synthesis". Angewandte Chemie. 44 (29): 4442–89. doi:10.1002/anie.200500368. PMID   15991198.
  39. Lessene G (2004). "Advances in the Negishi coupling". Aust. J. Chem. 57 (1): 107. doi:10.1071/ch03225.
  40. Torssell S, Wanngren E, Somfai P (May 2007). "Total synthesis of (-)-stemoamide". The Journal of Organic Chemistry. 72 (11): 4246–9. doi:10.1021/jo070498o. PMID   17451274.
  41. Gusovsky F, Padgett WL, Creveling CR, Daly JW (December 1992). "Interaction of pumiliotoxin B with an "alkaloid-binding domain" on the voltage-dependent sodium channel". Molecular Pharmacology. 42 (6): 1104–8. PMID   1336116.
  42. Aoyagi S, Hirashima S, Saito K, Kibayashi C (2002). "Convergent Approach to Pumiliotoxin Alkaloids. Asymmetric Total Synthesis of (+)-Pumiliotoxins A, B, and 225F". The Journal of Organic Chemistry. 67 (16): 5517–5526. doi:10.1021/jo0200466. PMID   12153249.
  43. Maloney DJ, Hecht SM (September 2005). "A stereocontrolled synthesis of delta-trans-tocotrienoloic acid". Organic Letters. 7 (19): 4297–300. doi:10.1021/ol051849t. PMID   16146411.
  44. Smith, Sean W.; Fu, Gregory C. (2008). "Nickel-Catalyzed Negishi Cross-Couplings of Secondary Nucleophiles with Secondary Propargylic Electrophiles at Room Temperature". Angewandte Chemie International Edition. 47 (48): 9334–9336. doi:10.1002/anie.200802784. ISSN   1521-3773. PMC   2790060 . PMID   18972493.
  45. Schmidt, Thomas; Kirschning, Andreas (2012). "Total Synthesis of Carolacton, a Highly Potent Biofilm Inhibitor". Angewandte Chemie International Edition. 51 (4): 1063–1066. doi:10.1002/anie.201106762. ISSN   1521-3773. PMID   22162345.
  46. Huo S (February 2003). "Highly efficient, general procedure for the preparation of alkylzinc reagents from unactivated alkyl bromides and chlorides". Organic Letters. 5 (4): 423–5. doi:10.1021/ol0272693. PMID   12583734.
  47. Giovannini R, Knochel P (1998). "Ni(II)-Catalyzed Cross-Coupling between Polyfunctional Arylzinc Derivatives and Primary Alkyl Iodides". Journal of the American Chemical Society. 120 (43): 11186–11187. doi:10.1021/ja982520o.
  48. Sase, Shohei; Jaric, Milica; Metzger, Albrecht; Malakhov, Vladimir; Knochel, Paul (2008-09-19). "One-Pot Negishi Cross-Coupling Reactions of In Situ Generated Zinc Reagents with Aryl Chlorides, Bromides, and Triflates". The Journal of Organic Chemistry. 73 (18): 7380–7382. doi:10.1021/jo801063c. ISSN   0022-3263. PMID   18693766.