CPhos

Last updated
CPhos
CPhos.PNG
Names
Preferred IUPAC name
2′-(Dicyclohexylphosphanyl)-N2,N2,N6,N6-tetramethyl[1,1′-biphenyl]-2,6-diamine
Other names
CPhos
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C28H41N2P/c1-29(2)25-19-13-20-26(30(3)4)28(25)24-18-11-12-21-27(24)31(22-14-7-5-8-15-22)23-16-9-6-10-17-23/h11-13,18-23H,5-10,14-17H2,1-4H3
    Key: DRNAQRXLOSUHBQ-UHFFFAOYSA-N
  • InChI=1/C28H41N2P/c1-29(2)25-19-13-20-26(30(3)4)28(25)24-18-11-12-21-27(24)31(22-14-7-5-8-15-22)23-16-9-6-10-17-23/h11-13,18-23H,5-10,14-17H2,1-4H3
    Key: DRNAQRXLOSUHBQ-UHFFFAOYAL
  • CN(C)C1=C(C(=CC=C1)N(C)C)C2=CC=CC=C2P(C3CCCCC3)C4CCCCC4
Properties
C28H41N2P
Molar mass 436.61
Appearancewhite solid [1]
Melting point 111 to 113 °C (232 to 235 °F; 384 to 386 K) [1]
organic solvents
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

CPhos is a phosphine ligand derived from biphenyl. It is a white solid that is soluble in organic solvents.

Contents

Its palladium complexes exhibit high activity for Negishi coupling reactions involving aryl bromides, chlorides and triflates. CPhos mediated reactions performed with secondary (sp3) alkylzinc halides often give excellent yields, with low conversion to the frequently encountered primary substituted by-products. [1]

Utility in Negishi Coupling

A simplified scheme showing the reaction course of isopropylzinc bromide with an aryl halide is shown below. Processes leading to byproduct formation are highlighted in red.

Oxidative addition (1) of the aryl halide to the palladium-ligand complex followed by transmetalation (2) gives intermediate B which can undergo reductive elimination (3) to afford the desired isopropyl arene C. However, intermediate B can also undergo β-hydride elimination (4) to afford D, which can either reductively eliminate (3’) to afford de-halogenated product G, or undergo insertion (5) leading to the formation of E. Once formed, E may also undergo reductive elimination (3’’) to afford the n-propyl by-product F.

CPhos minimises the conversion to undesired products F & G by increasing the rate of the reductive elimination of B, relative to the rate of β-hydride elimination.

The mechanism of the Negishi coupling Negishi coupling mechanism.png
The mechanism of the Negishi coupling

See also

Related Research Articles

The Heck reaction is the chemical reaction of an unsaturated halide with an alkene in the presence of a base and a palladium catalyst to form a substituted alkene. It is named after Tsutomu Mizoroki and Richard F. Heck. Heck was awarded the 2010 Nobel Prize in Chemistry, which he shared with Ei-ichi Negishi and Akira Suzuki, for the discovery and development of this reaction. This reaction was the first example of a carbon-carbon bond-forming reaction that followed a Pd(0)/Pd(II) catalytic cycle, the same catalytic cycle that is seen in other Pd(0)-catalyzed cross-coupling reactions. The Heck reaction is a way to substitute alkenes.

The Stille reaction is a chemical reaction widely used in organic synthesis. The reaction involves the coupling of two organic groups, one of which is carried as an organotin compound. A variety of organic electrophiles provide the other coupling partner. The Stille reaction is one of many palladium-catalyzed coupling reactions.

The Suzuki reaction is an organic reaction, classified as a cross-coupling reaction, where the coupling partners are a boronic acid and an organohalide and the catalyst is a palladium(0) complex. It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of palladium-catalyzed cross-couplings in organic synthesis. This reaction is also known as the Suzuki–Miyaura reaction or simply as the Suzuki coupling. It is widely used to synthesize polyolefins, styrenes, and substituted biphenyls. Several reviews have been published describing advancements and the development of the Suzuki reaction. The general scheme for the Suzuki reaction is shown below, where a carbon-carbon single bond is formed by coupling a halide (R1-X) with an organoboron species (R2-BY2) using a palladium catalyst and a base.

The Sonogashira reaction is a cross-coupling reaction used in organic synthesis to form carbon–carbon bonds. It employs a palladium catalyst as well as copper co-catalyst to form a carbon–carbon bond between a terminal alkyne and an aryl or vinyl halide.

Organopalladium chemistry is a branch of organometallic chemistry that deals with organic palladium compounds and their reactions. Palladium is often used as a catalyst in the reduction of alkenes and alkynes with hydrogen. This process involves the formation of a palladium-carbon covalent bond. Palladium is also prominent in carbon-carbon coupling reactions, as demonstrated in tandem reactions.

The Hiyama coupling is a palladium-catalyzed cross-coupling reaction of organosilanes with organic halides used in organic chemistry to form carbon–carbon bonds. This reaction was discovered in 1988 by Tamejiro Hiyama and Yasuo Hatanaka as a method to form carbon-carbon bonds synthetically with chemo- and regioselectivity. The Hiyama coupling has been applied to the synthesis of various natural products.

The Negishi coupling is a widely employed transition metal catalyzed cross-coupling reaction. The reaction couples organic halides or triflates with organozinc compounds, forming carbon-carbon bonds (C-C) in the process. A palladium (0) species is generally utilized as the metal catalyst, though nickel is sometimes used. A variety of nickel catalysts in either Ni0 or NiII oxidation state can be employed in Negishi cross couplings such as Ni(PPh3)4, Ni(acac)2, Ni(COD)2 etc.

Organozinc compound

Organozinc compounds in organic chemistry contain carbon to zinc chemical bonds. Organozinc chemistry is the science of organozinc compounds describing their physical properties, synthesis and reactions.

The Buchwald–Hartwig amination is a chemical reaction used in organic chemistry for the synthesis of carbon–nitrogen bonds via the palladium-catalyzed coupling reactions of amines with aryl halides. Although Pd-catalyzed C-N couplings were reported as early as 1983, Stephen L. Buchwald and John F. Hartwig have been credited, whose publications between 1994 and the late 2000s established the scope of the transformation. The reaction's synthetic utility stems primarily from the shortcomings of typical methods for the synthesis of aromatic C–N bonds, with most methods suffering from limited substrate scope and functional group tolerance. The development of the Buchwald–Hartwig reaction allowed for the facile synthesis of aryl amines, replacing to an extent harsher methods while significantly expanding the repertoire of possible C–N bond formation.

In organic chemistry, the Kumada coupling is a type of cross coupling reaction, useful for generating carbon–carbon bonds by the reaction of a Grignard reagent and an organic halide. The procedure uses transition metal catalysts, typically nickel or palladium, to couple a combination of two alkyl, aryl or vinyl groups. The groups of Robert Corriu and Makoto Kumada reported the reaction independently in 1972.

XPhos Chemical compound

XPhos is a phosphine ligand derived from biphenyl. Its palladium complexes exhibit high activity for Buchwald-Hartwig amination reactions involving aryl chlorides and aryl tosylates. Both palladium and copper complexes of the compound exhibit high activity for the coupling of aryl halides and aryl tosylates with various amides. It is also an efficient ligand for several commonly used C–C bond-forming cross-coupling reactions, including the Negishi, Suzuki, and the copper-free Sonogashira coupling reactions. It is especially efficient and general when employed as a (2-aminobiphenyl)-cyclometalated palladium mesylate precatalyst complex, XPhos-G3-Pd, which is commercially available and stable to bench storage. The ligand itself also has convenient handling characteristics as a crystalline, air-stable solid.

The intramolecular Heck reaction (IMHR) in chemistry is the coupling of an aryl or alkenyl halide with an alkene in the same molecule. The reaction may be used to produce carbocyclic or heterocyclic organic compounds with a variety of ring sizes. Chiral palladium complexes can be used to synthesize chiral intramolecular Heck reaction products in non-racemic form.

PEPPSI

PEPPSI is an abbreviation for pyridine-enhanced precatalyst preparation stabilization and initiation. It refers to a family of commercially available palladium catalysts developed around 2005 by Prof. Michael G. Organ and co-workers at York University, which can accelerate various carbon-carbon and carbon-heteroatom bond forming cross-coupling reactions. In comparison to many alternative palladium catalysts, Pd-PEPPSI-type complexes are stable to air and moisture and are relatively easy to synthesize and handle.

Decarboxylative cross coupling reactions are chemical reactions in which a carboxylic acid is reacted with an organic halide to form a new carbon-carbon bond, concomitant with loss of CO2. Aryl and alkyl halides participate. Metal catalyst, base, and oxidant are required.

John P. Wolfe

John Perry Wolfe is an American chemist and a professor of chemistry at the University of Michigan. He is best known for palladium-catalyzed C-C and C-N bond formation reactions. He was also one of the key scientists in the development of Buchwald ligands, one of which is appropriately named "JohnPhos" after him. Wolfe has taught at the University of Michigan since 2002.

Catellani reaction

The Catellani reaction was discovered by Marta Catellani and co-workers in 1997. The reaction uses aryl iodides to perform bi- or tri-functionalization, including C-H functionalization of the unsubstituted ortho position(s), followed a terminating cross-coupling reaction at the ipso position. This cross-coupling cascade reaction depends on the ortho-directing transient mediator, norbornene.

Palladium–NHC complex

In organometallic chemistry, palladium-NHC complexes are a family of organopalladium compounds in which palladium forms a coordination complex with N-heterocyclic carbenes (NHCs). They have been investigated for applications in homogeneous catalysis, particularly cross-coupling reactions.

In organic and organometallic chemistry, dialkylbiaryl phosphine (or dialkylbiarylphosphine) ligands are phosphorus-containing supporting ligands that are used to modulate the chemical reactivity of palladium and other transition metal based catalysts. They were first described by Stephen L. Buchwald in 1998 for applications in palladium-catalyzed coupling reactions to form carbon-nitrogen and carbon-carbon bonds. Before their development, use of first- or second-generation phosphine ligands for palladium-catalyzed C-N bond-forming cross-coupling (e.g., tris(o-tolyl)phosphine and BINAP, respectively) necessitated harsh conditions, and the scope of the transformation was severely limited. The Suzuki-Miyaura and Negishi cross-coupling reactions were typically performed with Pd(PPh3)4 as catalyst and were mostly limited to aryl bromides and iodides at elevated temperatures, while the widely available aryl chlorides were unreactive. The development of new classes of ligands was needed to address these limitations.

Heterobimetallic catalysis is an approach to catalysis that employs two different metals to promote a chemical reaction. Included in this definition are cases where: 1) each metal activates a different substrate, 2) both metals interact with the same substrate, and 3) only one metal directly interacts with the substrate(s), while the second metal interacts with the first.

Mizoroki-Heck vs. Reductive Heck

The Mizoroki−Heck coupling of aryl halides and alkenes to form C(sp2)–C(sp2) bonds has become a staple transformation in organic synthesis, owing to its broad functional group compatibility and varied scope. In stark contrast, the palladium-catalyzed reductive Heck reaction has received considerably less attention, despite the fact that early reports of this reaction date back almost half a century. From the perspective of retrosynthetic logic, this transformation is highly enabling because it can forge alkyl–aryl linkages from widely available alkenes, rather than from the less accessible and/or more expensive alkyl halide or organometallic C(sp3) synthons that are needed in a classical aryl/alkyl cross-coupling.

References

  1. 1 2 3 Han, C.; Buchwald, S. L. (2009). "Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides". J. Am. Chem. Soc. 131 (22): 7532–7533. doi:10.1021/ja902046m. PMC   2746668 . PMID   19441851.