Total synthesis

Last updated

Total synthesis is the complete chemical synthesis of a complex molecule, often a natural product, from simple, commercially-available precursors. [1] [2] [3] [4] It usually refers to a process not involving the aid of biological processes, which distinguishes it from semisynthesis. Syntheses may sometimes conclude at a precursor with further known synthetic pathways to a target molecule, in which case it is known as a formal synthesis. Total synthesis target molecules can be natural products, medicinally-important active ingredients, known intermediates, or molecules of theoretical interest. Total synthesis targets can also be organometallic or inorganic, [5] [6] though these are rarely encountered. Total synthesis projects often require a wide diversity of reactions and reagents, and subsequently requires broad chemical knowledge and training to be successful.

Contents

Often, the aim is to discover a new route of synthesis for a target molecule for which there already exist known routes. Sometimes, however, no route exists, and chemists wish to find a viable route for the first time. Total synthesis is particularly important for the discovery of new chemical reactions and new chemical reagents, as well as establishing synthetic routes for medicinally important compounds. [7]

Scope and definitions

There are numerous classes of natural products for which total synthesis is applied to. These include (but are not limited to): terpenes, alkaloids, polyketides and polyethers. [8] Total synthesis targets are sometimes referred to by their organismal origin such as plant, marine, and fungal. The term total synthesis is less frequently but still accurately applied to the synthesis of natural polypeptides and polynucleotides. The peptide hormones oxytocin and vasopressin were isolated and their total syntheses first reported in 1954. [9] It is not uncommon for natural product targets to feature multiple structural components of several natural product classes.

Aims

Although untrue from an historical perspective (see the history of the steroid, cortisone), total synthesis in the modern age has largely been an academic endeavor (in terms of manpower applied to problems). Industrial chemical needs often differ from academic focuses. Typically, commercial entities may pick up particular avenues of total synthesis efforts and expend considerable resources on particular natural product targets, especially if semi-synthesis can be applied to complex, natural product-derived drugs. Even so, for decades [10] there has been a continuing discussion regarding the value of total synthesis as an academic enterprise. [11] [12] [13] While there are some outliers, the general opinions are that total synthesis has changed in recent decades, will continue to change, and will remain an integral part of chemical research. [14] [15] [16] Within these changes, there has been increasing focus on improving the practicality and marketability of total synthesis methods. The Phil S. Baran group at Scripps, a notable pioneer of practical synthesis have endeavored to create scalable and high efficiency syntheses that would have more immediate uses outside of academia. [17] [18]

History

Vitamin B12 total synthesis: Retrosynthetic analysis of the Woodward-Eschenmoser total synthesis that was reported in two variants by these groups in 1972. The work involved more than 100 PhD trainees and postdoctoral fellows from 19 different countries. The retrosynthesis presents the disassembly of the target vitamin in a manner that makes chemical sense for its eventual forward construction. The target, Vitamin B12 (I), is envisioned being prepared by the simple addition of its tail, which had earlier been shown to be feasible. The needed precursor, cobyric acid (II), then becomes the target and constitutes the "corrin core" of the vitamin, and its preparation was envisaged to be possible via two pieces, a "western" part composed of the A and D rings (III) and an "eastern" part composed of the B and C rings (IV). The restrosynthetic analysis then envisions the starting materials required to make these two complex parts, the yet complex molecules V-VIII. VitaminB12 retrosynthesis.svg
Vitamin B12 total synthesis: Retrosynthetic analysis of the Woodward–Eschenmoser total synthesis that was reported in two variants by these groups in 1972. The work involved more than 100 PhD trainees and postdoctoral fellows from 19 different countries. The retrosynthesis presents the disassembly of the target vitamin in a manner that makes chemical sense for its eventual forward construction. The target, Vitamin B12 (I), is envisioned being prepared by the simple addition of its tail, which had earlier been shown to be feasible. The needed precursor, cobyric acid (II), then becomes the target and constitutes the "corrin core" of the vitamin, and its preparation was envisaged to be possible via two pieces, a "western" part composed of the A and D rings (III) and an "eastern" part composed of the B and C rings (IV). The restrosynthetic analysis then envisions the starting materials required to make these two complex parts, the yet complex molecules VVIII.

Friedrich Wöhler discovered that an organic substance, urea, could be produced from inorganic starting materials in 1828. That was an important conceptual milestone in chemistry by being the first example of a synthesis of a substance that had been known only as a byproduct of living processes. [2] Wöhler obtained urea by treating silver cyanate with ammonium chloride, a simple, one-step synthesis:

AgNCO + NH4Cl → (NH2)2CO + AgCl

Camphor was a scarce and expensive natural product with a worldwide demand.[ when? ] Haller and Blanc synthesized it from camphor acid; [2] however, the precursor, camphoric acid, had an unknown structure. When Finnish chemist Gustav Komppa synthesized camphoric acid from diethyl oxalate and 3,3-dimethylpentanoic acid in 1904, the structure of the precursors allowed contemporary chemists to infer the complicated ring structure of camphor. Shortly thereafter,[ when? ] William Perkin published another synthesis of camphor.[ relevant? ] The work on the total chemical synthesis of camphor allowed Komppa to begin industrial production of the compound, in Tainionkoski, Finland, in 1907.

The American chemist Robert Burns Woodward was a pre-eminent figure in developing total syntheses of complex organic molecules, some of his targets being cholesterol, cortisone, strychnine, lysergic acid, reserpine, chlorophyll, colchicine, vitamin B12, and prostaglandin F-2a. [2]

Vincent du Vigneaud was awarded the 1955 Nobel Prize in Chemistry for the total synthesis of the natural polypeptide oxytocin and vasopressin, which reported in 1954 with the citation "for his work on biochemically important sulphur compounds, especially for the first synthesis of a polypeptide hormone." [19]

Another gifted chemist is Elias James Corey, who won the Nobel Prize in Chemistry in 1990 for lifetime achievement in total synthesis and for the development of retrosynthetic analysis.

List of notable total syntheses


Related Research Articles

<span class="mw-page-title-main">Allenes</span> Any organic compound containing a C=C=C group

In organic chemistry, allenes are organic compounds in which one carbon atom has double bonds with each of its two adjacent carbon atoms. Allenes are classified as cumulated dienes. The parent compound of this class is propadiene, which is itself also called allene. An group of the structure R2C=C=CR− is called allenyl, where R is H or some alkyl group. Compounds with an allene-type structure but with more than three carbon atoms are members of a larger class of compounds called cumulenes with X=C=Y bonding.

<span class="mw-page-title-main">Diene</span> Covalent compound that contains two double bonds

In organic chemistry, a diene ; also diolefin, dy-OH-lə-fin) or alkadiene) is a covalent compound that contains two double bonds, usually among carbon atoms. They thus contain two alkene units, with the standard prefix di of systematic nomenclature. As a subunit of more complex molecules, dienes occur in naturally occurring and synthetic chemicals and are used in organic synthesis. Conjugated dienes are widely used as monomers in the polymer industry. Polyunsaturated fats are of interest to nutrition.

Combinatorial chemistry comprises chemical synthetic methods that make it possible to prepare a large number of compounds in a single process. These compound libraries can be made as mixtures, sets of individual compounds or chemical structures generated by computer software. Combinatorial chemistry can be used for the synthesis of small molecules and for peptides.

<span class="mw-page-title-main">Elias James Corey</span> American chemist (born 1928)

Elias James Corey is an American organic chemist. In 1990, he won the Nobel Prize in Chemistry "for his development of the theory and methodology of organic synthesis", specifically retrosynthetic analysis. Regarded by many as one of the greatest living chemists, he has developed numerous synthetic reagents, methodologies and total syntheses and has advanced the science of organic synthesis considerably.

<span class="mw-page-title-main">Robert Burns Woodward</span> American chemist (1917–1979)

Robert Burns Woodward was an American organic chemist. He is considered by many to be the preeminent synthetic organic chemist of the twentieth century, having made many key contributions to the subject, especially in the synthesis of complex natural products and the determination of their molecular structure. He worked closely with Roald Hoffmann on theoretical studies of chemical reactions. He was awarded the Nobel Prize in Chemistry in 1965.

<span class="mw-page-title-main">Medicinal chemistry</span> Scientific branch of chemistry

Medicinal or pharmaceutical chemistry is a scientific discipline at the intersection of chemistry and pharmacy involved with designing and developing pharmaceutical drugs. Medicinal chemistry involves the identification, synthesis and development of new chemical entities suitable for therapeutic use. It also includes the study of existing drugs, their biological properties, and their quantitative structure-activity relationships (QSAR).

Organic synthesis is a branch of chemical synthesis concerned with the construction of organic compounds. Organic compounds are molecules consisting of combinations of covalently-linked hydrogen, carbon, oxygen, and nitrogen atoms. Within the general subject of organic synthesis, there are many different types of synthetic routes that can be completed including total synthesis, stereoselective synthesis, automated synthesis, and many more. Additionally, in understanding organic synthesis it is necessary to be familiar with the methodology, techniques, and applications of the subject.

Retrosynthetic analysis is a technique for solving problems in the planning of organic syntheses. This is achieved by transforming a target molecule into simpler precursor structures regardless of any potential reactivity/interaction with reagents. Each precursor material is examined using the same method. This procedure is repeated until simple or commercially available structures are reached. These simpler/commercially available compounds can be used to form a synthesis of the target molecule. E.J. Corey formalized this concept in his book The Logic of Chemical Synthesis.

<span class="mw-page-title-main">Trimethylsilyl group</span> Functional group

A trimethylsilyl group (abbreviated TMS) is a functional group in organic chemistry. This group consists of three methyl groups bonded to a silicon atom [−Si(CH3)3], which is in turn bonded to the rest of a molecule. This structural group is characterized by chemical inertness and a large molecular volume, which makes it useful in a number of applications.

<span class="mw-page-title-main">K. C. Nicolaou</span> Cypriot-American chemist (born 1946)

Kyriacos Costa Nicolaou is a Cypriot-American chemist known for his research in the area of natural products total synthesis. He is currently Harry C. and Olga K. Wiess Professor of Chemistry at Rice University, having previously held academic positions at The Scripps Research Institute/UC San Diego and the University of Pennsylvania.

<span class="mw-page-title-main">2-Iodoxybenzoic acid</span> Chemical compound

2-Iodoxybenzoic acid (IBX) is an organic compound used in organic synthesis as an oxidizing agent. This periodinane is especially suited to oxidize alcohols to aldehydes. IBX is prepared from 2-iodobenzoic acid, potassium bromate, and sulfuric acid. Frigerio and co-workers have also demonstrated, in 1999 that potassium bromate may be replaced by commercially available Oxone. One of the main drawbacks of IBX is its limited solubility; IBX is insoluble in many common organic solvents. In the past, it was believed that IBX was shock sensitive, but it was later proposed that samples of IBX were shock sensitive due to the residual potassium bromate left from its preparation. Commercial IBX is stabilized by carboxylic acids such as benzoic acid and isophthalic acid.

The Weinreb ketone synthesis or Weinreb–Nahm ketone synthesis is a chemical reaction used in organic chemistry to make carbon–carbon bonds. It was discovered in 1981 by Steven M. Weinreb and Steven Nahm as a method to synthesize ketones. The original reaction involved two subsequent nucleophilic acyl substitutions: the conversion of an acid chloride with N,O-Dimethylhydroxylamine, to form a Weinreb–Nahm amide, and subsequent treatment of this species with an organometallic reagent such as a Grignard reagent or organolithium reagent. Nahm and Weinreb also reported the synthesis of aldehydes by reduction of the amide with an excess of lithium aluminum hydride.

<span class="mw-page-title-main">Paclitaxel total synthesis</span>

Paclitaxel total synthesis in organic chemistry is a major ongoing research effort in the total synthesis of paclitaxel (Taxol). This diterpenoid is an important drug in the treatment of cancer but, also expensive because the compound is harvested from a scarce resource, namely the Pacific yew. Not only is the synthetic reproduction of the compound itself of great commercial and scientific importance, but it also opens the way to paclitaxel derivatives not found in nature but with greater potential.

<span class="mw-page-title-main">Larry E. Overman</span>

Larry E. Overman is Distinguished Professor of Chemistry at the University of California, Irvine. He was born in Chicago in 1943. Overman obtained a B.A. degree from Earlham College in 1965, and he completed his Ph.D. in chemistry from the University of Wisconsin–Madison in 1969, under Howard Whitlock Jr. Professor Overman is a member of the United States National Academy of Sciences and the American Academy of Arts and Sciences. He was the recipient of the Arthur C. Cope Award in 2003, and he was awarded the Tetrahedron Prize for Creativity in Organic Chemistry for 2008.

The total synthesis of the complex biomolecule vitamin B12 was accomplished in two different approaches by the collaborating research groups of Robert Burns Woodward at Harvard and Albert Eschenmoser at ETH in 1972. The accomplishment required the effort of no less than 91 postdoctoral researchers (Harvard: 77, ETH: 14), and 12 Ph.D. students (at ETH) from 19 different nations over a period of almost 12 years. The synthesis project induced and involved a major change of paradigm in the field of natural product synthesis.

Marshall D. Gates Jr. (1915–2003) was an American chemist, holding the position of C.F. Houghton Professor of Chemistry at the University of Rochester. He was an organic chemist whose research was in the field of natural product synthesis. He is best known for publishing the first total synthesis of morphine in 1952.

Biomimetic synthesis is an area of organic chemical synthesis that is specifically biologically inspired. The term encompasses both the testing of a "biogenetic hypothesis" through execution of a series of reactions designed to parallel the proposed biosynthesis, as well as programs of study where a synthetic reaction or reactions aimed at a desired synthetic goal are designed to mimic one or more known enzymic transformations of an established biosynthetic pathway. The earliest generally cited example of a biomimetic synthesis is Sir Robert Robinson's organic synthesis of the alkaloid tropinone.

Corinna S. Schindler is a Professor of Chemistry at the University of Michigan. She develops catalytic reactions with environmentally benign metals such as iron, towards the synthesis of biologically active small molecules. For her research in the development of new catalysts, Schindler has been honored with several early-career researcher awards including the David and Lucile Packard Foundation Fellowship in 2016, the Alfred P. Sloan Fellowship in 2017, and being named a member of the C&EN Talented 12 in 2017. Schindler has served on the Editorial Board of Organic and Bimolecular Chemistry since 2018.

<span class="mw-page-title-main">Rick L. Danheiser</span> American organic chemist

Rick L. Danheiser is an American organic chemist and is the Arthur C. Cope Professor of Chemistry at the Massachusetts Institute of Technology and chair of the MIT faculty. His research involves the invention of new methods for the synthesis of complex organic compounds. Danheiser is known for the Danheiser annulation and Danheiser benzannulation reactions.

Ohyun Kwon is a Korean-American chemist who is a professor at the University of California, Los Angeles. Her research considers new methodologies for organic transformations and the development of chiral catalysts.

References

  1. "Archived copy". Archived from the original on 2014-12-20. Retrieved 2015-08-22.{{cite web}}: CS1 maint: archived copy as title (link)
  2. 1 2 3 4 5 K. C. Nicolaou; D. Vourloumis; N. Winssinger and P. S. Baran (2000). "The Art and Science of Total Synthesis at the Dawn of the Twenty-First Century" (reprint). Angewandte Chemie International Edition . 39 (1): 44–122. doi:10.1002/(SICI)1521-3773(20000103)39:1<44::AID-ANIE44>3.0.CO;2-L. PMID   10649349.
  3. Nicolaou, K. C. & Sorensen, E. J. 1996, Classics in Total Synthesis: Targets, Strategies, Methods, New York:John Wiley & Sons, ISBN   978-3-527-29231-8
  4. Nicolaou, K. C. & Snyder, S. A., 2003, Classics in Total Synthesis II: More Targets, Strategies, Methods, New York:John Wiley & Sons, ISBN   978-3-527-30684-8
  5. Schaak, Raymond (22 April 2013). "Emerging Strategies for the Total Synthesis of Inorganic Nanostructures". Angewandte Chemie International Edition. 52 (24): 6154–6178. doi:10.1002/anie.201207240. PMID   23610005 . Retrieved 15 July 2021.
  6. Woodward, R. B. (1963). "Versuche zur Synthese des Vitamins B12". Angewandte Chemie. 75 (18): 871–872. Bibcode:1963AngCh..75..871W. doi:10.1002/ange.19630751827.
  7. Discovery of Novel Synthetic Methodologies and Reagents during Natural Product Synthesis in the Post-Palytoxin Era Ahlam M. Armaly, Yvonne C. DePorre, Emilia J. Groso, Paul S. Riehl, and Corinna S. Schindler Chem. Rev., Article ASAP doi:10.1021/acs.chemrev.5b00034
  8. Springob, Karin (1 June 2009). Plant-derived Natural Products. Springer. pp. 3–50. doi:10.1007/978-0-387-85498-4_1. ISBN   978-0-387-85498-4 . Retrieved 24 June 2021.
  9. du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG (1954). "The Synthesis of Oxytocin". Journal of the American Chemical Society . 76 (12): 3115–3121. doi:10.1021/ja01641a004.
  10. Heathcock, Clayton (1996). Chemical Synthesis Gnosis to Prognosis. Springer. pp. 223–243. doi:10.1007/978-94-009-0255-8_9. ISBN   978-94-009-0255-8 . Retrieved 24 June 2021.
  11. Nicolaou, K. C. (1 April 2019). "Total Synthesis Endeavors and Their Contributions to Science and Society: A Personal Account". CCS Chemistry. 1 (1): 3–37. doi: 10.31635/ccschem.019.20190006 .
  12. Nicolaou, K.C. (22 April 2020). "Perspectives from nearly five decades of total synthesis of natural products and their analogues for biology and medicine". Natural Product Reports. 37 (11): 1404–1435. doi:10.1039/D0NP00003E. PMC   7578074 . PMID   32319494.
  13. Qualmann, Kate (15 August 2019). "Excellence in Industrial Organic Synthesis: Celebrating the Past, Looking to the Future". ACS Axial. ACS Axial. Retrieved 24 June 2021.
  14. Baran, Phil (11 April 2018). "Natural Product Total Synthesis: As Exciting as Ever and Here To Stay". Journal of the American Chemical Society. 140 (18): 4751–4755. doi: 10.1021/jacs.8b02266 . PMID   29635919.
  15. Hudlicky, Tomas (31 December 2018). "Benefits of Unconventional Methods in the Total Synthesis of Natural Products". ACS Omega. 3 (12): 17326–17340. doi:10.1021/acsomega.8b02994. PMC   6312638 . PMID   30613812.
  16. Derek, Lowe. "How Healthy is Total Synthesis". In The Pipeline (AAAS). The American Association for the Advancement of Science. Retrieved 24 June 2021.
  17. "Phil Baran Research". Phil Baran Research Lab. Scripps Institute. Retrieved 24 June 2021.
  18. Hayashi, Yujiro (21 October 2020). "Time Economy in Total Synthesis". Journal of Organic Chemistry. 86 (1): 1–23. doi:10.1021/acs.joc.0c01581. PMID   33085885. S2CID   224825988 . Retrieved 24 June 2021.
  19. "The Nobel Prize in Chemistry 1955". Nobelprize.org. Nobel Media AB . Retrieved 17 November 2016.
  20. Remembering Organic Chemistry Legend Robert Burns Woodward, "C&EN", 4/10/2017
  21. Rao, R. Balaji. (2016). Logic of Organic Synthesis. LibreTexts.
  22. Robinson, Woodward and the synthesis of cholesterol Greg Mulheirn Endeavour Volume 24, Issue 3, 1 September 2000, Pages 107-110 doi : 10.1016/S0160-9327(00)01310-7