Theoretical chemistry

Last updated
Jacobus van 't Hoff (1852-1911), an influential theoretical chemist and the first winner of the Nobel Prize in Chemistry. Jacobus van 't Hoff by Perscheid 1904.jpg
Jacobus van 't Hoff (1852–1911), an influential theoretical chemist and the first winner of the Nobel Prize in Chemistry.

Theoretical chemistry is the branch of chemistry which develops theoretical generalizations that are part of the theoretical arsenal of modern chemistry: for example, the concepts of chemical bonding, chemical reaction, valence, the surface of potential energy, molecular orbitals, orbital interactions, and molecule activation.



Theoretical chemistry unites principles and concepts common to all branches of chemistry. Within the framework of theoretical chemistry, there is a systematization of chemical laws, principles and rules, their refinement and detailing, the construction of a hierarchy. The central place in theoretical chemistry is occupied by the doctrine of the interconnection of the structure and properties of molecular systems. It uses mathematical and physical methods to explain the structures and dynamics of chemical systems and to correlate, understand, and predict their thermodynamic and kinetic properties. In the most general sense, it is explanation of chemical phenomena by methods of theoretical physics. In contrast to theoretical physics, in connection with the high complexity of chemical systems, theoretical chemistry, in addition to approximate mathematical methods, often uses semi-empirical and empirical methods.

In recent years, it has consisted primarily of quantum chemistry, i.e., the application of quantum mechanics to problems in chemistry. Other major components include molecular dynamics, statistical thermodynamics and theories of electrolyte solutions, reaction networks, polymerization, catalysis, molecular magnetism and spectroscopy.

Modern theoretical chemistry may be roughly divided into the study of chemical structure and the study of chemical dynamics. The former includes studies of: electronic structure, potential energy surfaces, and force fields; vibrational-rotational motion; equilibrium properties of condensed-phase systems and macro-molecules. Chemical dynamics includes: bimolecular kinetics and the collision theory of reactions and energy transfer; unimolecular rate theory and metastable states; condensed-phase and macromolecular aspects of dynamics.

Branches of theoretical chemistry

Quantum chemistry
The application of quantum mechanics or fundamental interactions to chemical and physico-chemical problems. Spectroscopic and magnetic properties are between the most frequently modelled.
Computational chemistry
The application of scientific computing to chemistry, involving approximation schemes such as Hartree–Fock, post-Hartree–Fock, density functional theory, semiempirical methods (such as PM3) or force field methods. Molecular shape is the most frequently predicted property. Computers can also predict vibrational spectra and vibronic coupling, but also acquire and Fourier transform Infra-red Data into frequency information. The comparison with predicted vibrations supports the predicted shape.
Molecular modelling
Methods for modelling molecular structures without necessarily referring to quantum mechanics. Examples are molecular docking, protein-protein docking, drug design, combinatorial chemistry. The fitting of shape and electric potential are the driving factor in this graphical approach.
Molecular dynamics
Application of classical mechanics for simulating the movement of the nuclei of an assembly of atoms and molecules. The rearrangement of molecules within an ensemble is controlled by Van der Waals forces and promoted by temperature.
Molecular mechanics
Modeling of the intra- and inter-molecular interaction potential energy surfaces via potentials. The latter are usually parameterized from ab initio calculations.
Mathematical chemistry
Discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. Topology is a branch of mathematics that allows researchers to predict properties of flexible finite size bodies like clusters.
Theoretical chemical kinetics
Theoretical study of the dynamical systems associated to reactive chemicals, the activated complex and their corresponding differential equations.
Cheminformatics (also known as chemoinformatics)
The use of computer and informational techniques, applied to crop information to solve problems in the field of chemistry.:
Chemical engineering
The application of chemistry to industrial processes to conduct research and development. This allows for development and improvement of new and existing products and manufacturing processes.

Historically, the major field of application of theoretical chemistry has been in the following fields of research:

Hence, theoretical chemistry has emerged as a branch of research. With the rise of the density functional theory and other methods like molecular mechanics, the range of application has been extended to chemical systems which are relevant to other fields of chemistry and physics, including biochemistry, condensed matter physics, nanotechnology or molecular biology.

See also


Related Research Articles

<span class="mw-page-title-main">Condensed matter physics</span> Branch of physics

Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases that arise from electromagnetic forces between atoms and electrons. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the superconducting phase exhibited by certain materials at extremely low cryogenic temperatures, the ferromagnetic and antiferromagnetic phases of spins on crystal lattices of atoms, the Bose–Einstein condensates found in ultracold atomic systems, and liquid crystals. Condensed matter physicists seek to understand the behavior of these phases by experiments to measure various material properties, and by applying the physical laws of quantum mechanics, electromagnetism, statistical mechanics, and other physics theories to develop mathematical models and predict the properties of extremely large groups of atoms.

<span class="mw-page-title-main">Computational chemistry</span> Branch of chemistry

Computational chemistry is a branch of chemistry that uses computer simulations to assist in solving chemical problems. It uses methods of theoretical chemistry incorporated into computer programs to calculate the structures and properties of molecules, groups of molecules, and solids. The importance of this subject stems from the fact that, with the exception of some relatively recent findings related to the hydrogen molecular ion, achieving an accurate quantum mechanical depiction of chemical systems analytically, or in a closed form, is not feasible. The complexity inherent in the many-body problem exacerbates the challenge of providing detailed descriptions of quantum mechanical systems. While computational results normally complement information obtained by chemical experiments, it can occasionally predict unobserved chemical phenomena.

The following outline is provided as an overview of and topical guide to chemistry:

<span class="mw-page-title-main">Physical chemistry</span> Physics applied to chemical systems

Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibria.

Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together is called the "physical sciences".

The following outline is provided as an overview of and topical guide to physics:

Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics.

Atomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions, at the scale of one or a few atoms and energy scales around several electron volts. The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments. Typically, the theory and applications of emission, absorption, scattering of electromagnetic radiation (light) from excited atoms and molecules, analysis of spectroscopy, generation of lasers and masers, and the optical properties of matter in general, fall into these categories.

<span class="mw-page-title-main">Computational physics</span> Numerical simulations of physical problems via computers

Computational physics is the study and implementation of numerical analysis to solve problems in physics. Historically, computational physics was the first application of modern computers in science, and is now a subset of computational science. It is sometimes regarded as a subdiscipline of theoretical physics, but others consider it an intermediate branch between theoretical and experimental physics — an area of study which supplements both theory and experiment.

<span class="mw-page-title-main">Molecular physics</span> Study of the physical and chemical properties of molecules

Molecular physics is the study of the physical properties of molecules and molecular dynamics. The field overlaps significantly with physical chemistry, chemical physics, and quantum chemistry. It is often considered as a sub-field of atomic, molecular, and optical physics. Research groups studying molecular physics are typically designated as one of these other fields. Molecular physics addresses phenomena due to both molecular structure and individual atomic processes within molecules. Like atomic physics, it relies on a combination of classical and quantum mechanics to describe interactions between electromagnetic radiation and matter. Experiments in the field often rely heavily on techniques borrowed from atomic physics, such as spectroscopy and scattering.

Chemical physics is a subdiscipline of chemistry and physics that investigates physicochemical phenomena using techniques from atomic and molecular physics and condensed matter physics; it is the branch of physics that studies chemical processes from the point of view of physics. While at the interface of physics and chemistry, chemical physics is distinct from physical chemistry in that it focuses more on the characteristic elements and theories of physics. Meanwhile, physical chemistry studies the physical nature of chemistry. Nonetheless, the distinction between the two fields is vague, and scientists often practice in both fields during the course of their research.

<span class="mw-page-title-main">Force field (chemistry)</span> Concept on molecular modeling

In the context of chemistry, molecular physics and physical chemistry and molecular modelling, a force field is a computational model that is used to describe the forces between atoms within molecules or between molecules as well as in crystals. More precisely, the force field refers to the functional form and parameter sets used to calculate the potential energy of a system of the atomistic level. Force fields are usually used in molecular dynamics or Monte Carlo simulations. The parameters for a chosen energy function may be derived from classical laboratory experiment data, calculations in quantum mechanics, or both. Force fields utilize the same concept as force fields in classical physics, with the main difference that the force field parameters in chemistry describe the energy landscape on the atomistic level. From a force field, the acting forces on every particle are derived as a gradient of the potential energy with respect to the particle coordinates.

<span class="mw-page-title-main">Spartan (chemistry software)</span>

Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ab initio models, density functional models, post-Hartree–Fock models, and thermochemical recipes including G3(MP2) and T1. Quantum chemistry calculations in Spartan are powered by Q-Chem.

Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. Ab initio means "from first principles" or "from the beginning", implying that the only inputs into an ab initio calculation are physical constants. Ab initio quantum chemistry methods attempt to solve the electronic Schrödinger equation given the positions of the nuclei and the number of electrons in order to yield useful information such as electron densities, energies and other properties of the system. The ability to run these calculations has enabled theoretical chemists to solve a range of problems and their importance is highlighted by the awarding of the Nobel prize to John Pople and Walter Kohn.

Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.

<span class="mw-page-title-main">Debashis Mukherjee</span> Indian theoretical chemist

Debashis Mukherjee is a theoretical chemist, well known for his research in the fields of molecular many body theory, theoretical spectroscopy, finite temperature non-perturbative many body theories. Mukherjee has been the first to develop and implement a class of many-body methods for electronic structure which are now standard works in the field. These methods, collectively called multireference coupled cluster formalisms, are versatile and powerful methods for predicting with quantitative accuracy the energetics and cross-sections of a vast range of molecular excitations and ionization. A long-standing problem of guaranteeing proper scaling of energy for many electron wave-functions of arbitrary complexity has also been first resolved by him. He has also been the first to develop a rigorously size-extensive state-specific multi-reference coupled cluster formalism, and its perturbative counterpart which is getting increasingly recognized as a very promising methodological advance.

<span class="mw-page-title-main">Branches of physics</span> Overview of the branches of physics

Physics is a scientific discipline that seeks to construct and experimentally test theories of the physical universe. These theories vary in their scope and can be organized into several distinct branches, which are outlined in this article.

The following outline is provided as an overview of and topical guide to natural science:

In computational chemistry, a solvent model is a computational method that accounts for the behavior of solvated condensed phases. Solvent models enable simulations and thermodynamic calculations applicable to reactions and processes which take place in solution. These include biological, chemical and environmental processes. Such calculations can lead to new predictions about the physical processes occurring by improved understanding.