Food physical chemistry

Last updated

Food physical chemistry is considered to be a branch of Food chemistry [1] [2] concerned with the study of both physical and chemical interactions in foods in terms of physical and chemical principles applied to food systems, as well as the applications of physical/chemical techniques and instrumentation for the study of foods. [3] [4] [5] [6] This field encompasses the "physiochemical principles of the reactions and conversions that occur during the manufacture, handling, and storage of foods." [7]

Contents

Food physical chemistry concepts are often drawn from rheology, theories of transport phenomena, physical and chemical thermodynamics, chemical bonds and interaction forces, quantum mechanics and reaction kinetics, biopolymer science, colloidal interactions, nucleation, glass transitions, and freezing, [8] [9] disordered/noncrystalline solids.

Techniques utilized range widely from dynamic rheometry, optical microscopy, electron microscopy, AFM, light scattering, X-ray diffraction/neutron diffraction, [10] to MRI, spectroscopy (NMR, [11] FT-NIR/IR, NIRS, ESR and EPR, [12] [13] CD/VCD, [14] Fluorescence, FCS, [15] [16] [17] [18] [19] HPLC, GC-MS, [20] [21] and other related analytical techniques.

Understanding food processes and the properties of foods requires a knowledge of physical chemistry and how it applies to specific foods and food processes. Food physical chemistry is essential for improving the quality of foods, their stability, and food product development. Because food science is a multi-disciplinary field, food physical chemistry is being developed through interactions with other areas of food chemistry and food science, such as food analytical chemistry, food process engineering/food processing, food and bioprocess technology, food extrusion, food quality control, food packaging, food biotechnology, and food microbiology.

Topics in Food physical chemistry

The following are examples of topics in food physical chemistry that are of interest to both the food industry and food science:

Starch, 800x magnified, under polarized light Starkemehl 800 fach Polfilter.jpg
Starch, 800x magnified, under polarized light
Macaroni is an extruded hollow pasta. Macaroni closeup.jpg
Macaroni is an extruded hollow pasta.
Visualisation of the human interactome network topology with the blue lines between proteins (represented as points) showing protein-protein interactions. Human interactome.jpg
Visualisation of the human interactome network topology with the blue lines between proteins (represented as points) showing protein-protein interactions.

Techniques gallery: High-Field NMR, CARS (Raman spectroscopy), Fluorescence confocal microscopy and Hyperspectral imaging

See also

Example of a GC-MS instrument GCMS closed.jpg
Example of a GC-MS instrument
An FTIR interferogram. The central peak is at zero retardation, ZPD) where the maximum amount of light passes through the interferometer to the detector. FTIR-interferogram.svg
An FTIR interferogram. The central peak is at zero retardation, ZPD) where the maximum amount of light passes through the interferometer to the detector.

Related Research Articles

The following outline is provided as an overview of and topical guide to chemistry:

<span class="mw-page-title-main">Polymer</span> Substance composed of macromolecules with repeating structural units

A polymer is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

<span class="mw-page-title-main">Physical chemistry</span> Physics applied to chemical systems

Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibria.

<span class="mw-page-title-main">Outline of physical science</span> Hierarchical outline list of articles related to the physical sciences

Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together called the "physical sciences".

<span class="mw-page-title-main">Biophysics</span> Study of biological systems using methods from the physical sciences

Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. Biophysics covers all scales of biological organization, from molecular to organismic and populations. Biophysical research shares significant overlap with biochemistry, molecular biology, physical chemistry, physiology, nanotechnology, bioengineering, computational biology, biomechanics, developmental biology and systems biology.

<span class="mw-page-title-main">Surface science</span> Study of physical and chemical phenomena that occur at the interface of two phases

Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum interfaces, and liquid–gas interfaces. It includes the fields of surface chemistry and surface physics. Some related practical applications are classed as surface engineering. The science encompasses concepts such as heterogeneous catalysis, semiconductor device fabrication, fuel cells, self-assembled monolayers, and adhesives. Surface science is closely related to interface and colloid science. Interfacial chemistry and physics are common subjects for both. The methods are different. In addition, interface and colloid science studies macroscopic phenomena that occur in heterogeneous systems due to peculiarities of interfaces.

<span class="mw-page-title-main">Max Planck Institute for Biophysical Chemistry</span> Research institute

The Max Planck Institute for Biophysical Chemistry, also known as the Karl-Friedrich Bonhoeffer Institute, was a research institute of the Max Planck Society, located in Göttingen, Germany. On January 1, 2022, the institute merged with the Max Planck Institute for Experimental Medicine in Göttingen to form the Max Planck Institute for Multidisciplinary Sciences.

Fluorescence correlation spectroscopy (FCS) is a statistical analysis, via time correlation, of stationary fluctuations of the fluorescence intensity. Its theoretical underpinning originated from L. Onsager's regression hypothesis. The analysis provides kinetic parameters of the physical processes underlying the fluctuations. One of the interesting applications of this is an analysis of the concentration fluctuations of fluorescent particles (molecules) in solution. In this application, the fluorescence emitted from a very tiny space in solution containing a small number of fluorescent particles (molecules) is observed. The fluorescence intensity is fluctuating due to Brownian motion of the particles. In other words, the number of the particles in the sub-space defined by the optical system is randomly changing around the average number. The analysis gives the average number of fluorescent particles and average diffusion time, when the particle is passing through the space. Eventually, both the concentration and size of the particle (molecule) are determined. Both parameters are important in biochemical research, biophysics, and chemistry.

GRE Subject Biochemistry, Cell and Molecular Biology was a standardized exam provided by ETS that was discontinued in December 2016. It is a paper-based exam and there are no computer-based versions of it. ETS places this exam three times per year: once in April, once in October and once in November. Some graduate programs in the United States recommend taking this exam, while others require this exam score as a part of the application to their graduate programs. ETS sends a bulletin with a sample practice test to each candidate after registration for the exam. There are 180 questions within the biochemistry subject test.

Watt Wetmore Webb was an American biophysicist, known for his co-invention of multiphoton microscopy in 1990.

Food chemistry is the study of chemical processes and interactions of all biological and non-biological components of foods. The biological substances include such items as meat, poultry, lettuce, beer, milk as examples. It is similar to biochemistry in its main components such as carbohydrates, lipids, and protein, but it also includes areas such as water, vitamins, minerals, enzymes, food additives, flavors, and colors. This discipline also encompasses how products change under certain food processing techniques and ways either to enhance or to prevent them from happening. An example of enhancing a process would be to encourage fermentation of dairy products with microorganisms that convert lactose to lactic acid; an example of preventing a process would be stopping the browning on the surface of freshly cut apples using lemon juice or other acidulated water.

Chemical imaging is the analytical capability to create a visual image of components distribution from simultaneous measurement of spectra and spatial, time information. Hyperspectral imaging measures contiguous spectral bands, as opposed to multispectral imaging which measures spaced spectral bands.

Vibrational circular dichroism (VCD) is a spectroscopic technique which detects differences in attenuation of left and right circularly polarized light passing through a sample. It is the extension of circular dichroism spectroscopy into the infrared and near infrared ranges.

Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.

Herbert Sander Gutowsky was an American chemist who was a Professor of Chemistry at the University of Illinois Urbana-Champaign. Gutowsky was the first to apply nuclear magnetic resonance (NMR) methods to the field of chemistry. He used nuclear magnetic resonance spectroscopy to determine the structure of molecules. His pioneering work developed experimental control of NMR as a scientific instrument, connected experimental observations with theoretical models, and made NMR one of the most effective analytical tools for analysis of molecular structure and dynamics in liquids, solids, and gases, used in chemical and medical research, His work was relevant to the solving of problems in chemistry, biochemistry, and materials science, and has influenced many of the subfields of more recent NMR spectroscopy.

Harden M. McConnell was an American physical chemist. His many awards included the National Medal of Science and the Wolf Prize, and he was elected to the National Academy of Science."

The following outline is provided as an overview of and topical guide to biophysics:

<span class="mw-page-title-main">G. Marius Clore</span> Molecular biophysicist, structural biologist

G. Marius Clore MAE, FRSC, FRS is a British-born, Anglo-American molecular biophysicist and structural biologist. He was born in London, U.K. and is a dual US/U.K. Citizen. He is a Member of the National Academy of Sciences, a Fellow of the Royal Society, a NIH Distinguished Investigator, and the Chief of the Molecular and Structural Biophysics Section in the Laboratory of Chemical Physics of the National Institute of Diabetes and Digestive and Kidney Diseases at the U.S. National Institutes of Health. He is known for his foundational work in three-dimensional protein and nucleic acid structure determination by biomolecular NMR spectroscopy, for advancing experimental approaches to the study of large macromolecules and their complexes by NMR, and for developing NMR-based methods to study rare conformational states in protein-nucleic acid and protein-protein recognition. Clore's discovery of previously undetectable, functionally significant, rare transient states of macromolecules has yielded fundamental new insights into the mechanisms of important biological processes, and in particular the significance of weak interactions and the mechanisms whereby the opposing constraints of speed and specificity are optimized. Further, Clore's work opens up a new era of pharmacology and drug design as it is now possible to target structures and conformations that have been heretofore unseen.

<span class="mw-page-title-main">John Anthony Schellman</span> American biophysical chemist (1924–2014)

John Anthony Schellman was an American biophysical chemist at the University of Oregon, a member of the National Academy of Sciences, a Biophysical Society Fellow, and an American Physical Society Fellow.

References

  1. John M. de Man.1999. Principles of Food Chemistry (Food Science Text Series), Springer Science, Third Edition
  2. John M. de Man. 2009. Food process engineering and technology, Academic Press, Elsevier: London and New York, 1st edn.
  3. Pieter Walstra. 2003. Physical Chemistry Of Foods. Marcel Dekker, Inc.: New York, 873 pages
  4. Physical Chemistry Of Food Processes: Fundamental Aspects.1992. van Nostrand-Reinhold vol.1., 1st Edition,
  5. Henry G. Schwartzberg, Richard W. Hartel. 1992. Physical Chemistry of Foods. IFT Basic Symposium Series, Marcel Dekker, Inc.:New York, 793 pages
  6. Physical Chemistry of Food Processes, Advanced Techniques, Structures and Applications. 1994. van Nostrand-Reinhold vols.1-2., 1st Edition, 998 pages; 3rd edn. Minuteman Press, 2010; vols. 2-3, fifth edition (in press)
  7. Pieter Walstra. 2003. Physical Chemistry Of Foods. Marcel Dekker, Inc.: New York, 873 pages
  8. Pieter Walstra. 2003. Physical Chemistry Of Foods. Marcel Dekker, Inc.: New York, 873 pages
  9. Physical Chemistry Of Food Processes: Fundamental Aspects.1992.van Nostrand-Reinhold vol.1., 1st Edition,
  10. Physical Chemistry of Food Processes, Advanced Techniques, Structures and Applications.1994. van Nostrand-Reinhold vols.1-2., 1st Edition, 998 pages; 3rd edn. Minuteman Press, 2010; vols. 2-3, fifth edition (in press)
  11. https://www.nobelprize.org/nobel_prizes/physics/laureates/1952/ First Nobel Prize for NMR in Physics, in 1952
  12. http://www.ismrm.org/12/aboutzavoisky.htm ESR discovery in 1941
  13. Abragam, A.; Bleaney, B. Electron paramagnetic resonance of transition ions. Clarendon Press:Oxford, 1970, 1,116 pages.
  14. Physical Chemistry of Food Processes, Advanced Techniques, Structures and Applications.1994. van Nostrand-Reinhold vols.1-2., 1st Edition, 998 pages; 3rd edn. Minuteman Press, 2010; vols. 2-3, fifth edition (in press)
  15. Magde D.; Elson E. L.; Webb W. W. (1972). "Thermodynamic fluctuations in a reacting system: Measurement by fluorescence correlation spectroscopy, (1972)". Phys Rev Lett. 29 (11): 705–708. doi:10.1103/physrevlett.29.705.
  16. Ehrenberg, M., Rigler, R. (1974). "Rotational brownian motion and fluorescence intensity fluctuations". Chem Phys. 4 (3): 390–401. Bibcode:1974CP......4..390E. doi:10.1016/0301-0104(74)85005-6. ISSN   0301-0104.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. Elson E. L., Magde D. (1974). "Fluorescence correlation spectroscopy I. Conceptual basis and theory, (1974)". Biopolymers. 13: 1–27. doi:10.1002/bip.1974.360130102. S2CID   97201376.
  18. Magde D.; Elson E. L.; Webb W. W. (1974). "Fluorescence correlation spectroscopy II. An experimental realization, (1974)". Biopolymers. 13 (1): 29–61. doi:10.1002/bip.1974.360130103. PMID   4818131. S2CID   2832069.
  19. Thompson N L 1991 Topics in Fluorescence Spectroscopy Techniques vol 1, ed J R Lakowicz (New York: Plenum) pp 337–78
  20. Gohlke, R. S. (1959). "Time-of-Flight Mass Spectrometry and Gas-Liquid Partition Chromatography". Analytical Chemistry . 31 (4): 535–541. doi:10.1021/ac50164a024.
  21. Gohlke, R; McLafferty, Fred W. (1993). "Early gas chromatography/mass spectrometry". Journal of the American Society for Mass Spectrometry . 4 (5): 367–71. doi: 10.1016/1044-0305(93)85001-E . PMID   24234933.

Journals