Environmental chemistry

Last updated
White bags filled with contaminated stones line the shore near an industrial oil spill in Raahe, Finland FI-Raahe-20140609 183727.jpg
White bags filled with contaminated stones line the shore near an industrial oil spill in Raahe, Finland

Environmental chemistry is the scientific study of the chemical and biochemical phenomena that occur in natural places. It should not be confused with green chemistry, which seeks to reduce potential pollution at its source. It can be defined as the study of the sources, reactions, transport, effects, and fates of chemical species in the air, soil, and water environments; and the effect of human activity and biological activity on these. Environmental chemistry is an interdisciplinary science that includes atmospheric, aquatic and soil chemistry, as well as heavily relying on analytical chemistry and being related to environmental and other areas of science.

Contents

Environmental chemistry involves first understanding how the uncontaminated environment works, which chemicals in what concentrations are present naturally, and with what effects. Without this it would be impossible to accurately study the effects humans have on the environment through the release of chemicals.

Environmental chemists draw on a range of concepts from chemistry and various environmental sciences to assist in their study of what is happening to a chemical species in the environment. Important general concepts from chemistry include understanding chemical reactions and equations, solutions, units, sampling, and analytical techniques. [1]

Contaminant

A contaminant is a substance present in nature at a level higher than fixed levels or that would not otherwise be there. [2] [3] This may be due to human activity and bioactivity. The term contaminant is often used interchangeably with pollutant , which is a substance that detrimentally impacts the surrounding environment. [4] [5] While a contaminant is sometimes a substance in the environment as a result of human activity, but without harmful effects, it sometimes the case that toxic or harmful effects from contamination only become apparent at a later date. [6]

The "medium" such as soil or organism such as fish affected by the pollutant or contaminant is called a receptor, whilst a sink is a chemical medium or species that retains and interacts with the pollutant such as carbon sink and its effects by microbes.

Environmental indicators

Chemical measures of water quality include dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total dissolved solids (TDS), pH, nutrients (nitrates and phosphorus), heavy metals, soil chemicals (including copper, zinc, cadmium, lead and mercury), and pesticides.

Applications

Environmental chemistry is used by the Environment Agency in England, Natural Resources Wales, the United States Environmental Protection Agency, the Association of Public Analysts, and other environmental agencies and research bodies around the world to detect and identify the nature and source of pollutants. These can include:

Methods

Quantitative chemical analysis is a key part of environmental chemistry, since it provides the data that frame most environmental studies. [11]

Common analytical techniques used for quantitative determinations in environmental chemistry include classical wet chemistry, such as gravimetric, titrimetric and electrochemical methods. More sophisticated approaches are used in the determination of trace metals and organic compounds. Metals are commonly measured by atomic spectroscopy and mass spectrometry: Atomic Absorption Spectrophotometry (AAS) and Inductively Coupled Plasma Atomic Emission (ICP-AES) or Inductively Coupled Plasma Mass Spectrometric (ICP-MS) techniques. Organic compounds, including PAHs, are commonly measured also using mass spectrometric methods, such as Gas chromatography-mass spectrometry (GC/MS) and Liquid chromatography-mass spectrometry (LC/MS). Tandem Mass spectrometry MS/MS and High Resolution/Accurate Mass spectrometry HR/AM offer sub part per trillion detection. Non-MS methods using GCs and LCs having universal or specific detectors are still staples in the arsenal of available analytical tools.

Other parameters often measured in environmental chemistry are radiochemicals. These are pollutants which emit radioactive materials, such as alpha and beta particles, posing danger to human health and the environment. Particle counters and Scintillation counters are most commonly used for these measurements. Bioassays and immunoassays are utilized for toxicity evaluations of chemical effects on various organisms. Polymerase Chain Reaction PCR is able to identify species of bacteria and other organisms through specific DNA and RNA gene isolation and amplification and is showing promise as a valuable technique for identifying environmental microbial contamination.

Published analytical methods

Peer-reviewed test methods have been published by government agencies [12] [13] and private research organizations. [14] Approved published methods must be used when testing to demonstrate compliance with regulatory requirements.

Notable environmental chemists


Joan Berkowitz
Paul Crutzen (Nobel Prize in Chemistry, 1995)
Philip Gschwend
Alice Hamilton
John M. Hayes
Charles David Keeling
Ralph Keeling
Mario Molina (Nobel Prize in Chemistry, 1995)
James J. Morgan
Clair Patterson
Roger Revelle
Sherry Roland (Nobel Prize in Chemistry, 1995)
Robert Angus Smith
Susan Solomon
Werner Stumm
Ellen Swallow Richards
Hans Suess
John Tyndall

See also

Related Research Articles

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, with a negative impact on their uses. It is usually a result of human activities. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources. These are sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution may affect either surface water or groundwater. This form of pollution can lead to many problems. One is the degradation of aquatic ecosystems. Another is spreading water-borne diseases when people use polluted water for drinking or irrigation. Water pollution also reduces the ecosystem services such as drinking water provided by the water resource.

<span class="mw-page-title-main">Environmental remediation</span> Removal of pollution from soil, groundwater etc.

Environmental remediation is the cleanup of hazardous substances dealing with the removal, treatment and containment of pollution or contaminants from environmental media such as soil, groundwater, sediment. Remediation may be required by regulations before development of land revitalization projects. Developers who agree to voluntary cleanup may be offered incentives under state or municipal programs like New York State's Brownfield Cleanup Program. If remediation is done by removal the waste materials are simply transported off-site for disposal at another location. The waste material can also be contained by physical barriers like slurry walls. The use of slurry walls is well-established in the construction industry. The application of (low) pressure grouting, used to mitigate soil liquefaction risks in San Francisco and other earthquake zones, has achieved mixed results in field tests to create barriers, and site-specific results depend upon many variable conditions that can greatly impact outcomes.

<span class="mw-page-title-main">Bioremediation</span> Process used to treat contaminated media such as water and soil

Bioremediation broadly refers to any process wherein a biological system, living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physicochemical treatment methods bioremediation may offer advantages as it aims to be sustainable, eco-friendly, cheap, and scalable.

<span class="mw-page-title-main">Polycyclic aromatic hydrocarbon</span> Hydrocarbon composed of multiple aromatic rings

A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the incomplete combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.

<span class="mw-page-title-main">Gas chromatography–mass spectrometry</span> Analytical method

Gas chromatography–mass spectrometry (GC–MS) is an analytical method that combines the features of gas-chromatography and mass spectrometry to identify different substances within a test sample. Applications of GC–MS include drug detection, fire investigation, environmental analysis, explosives investigation, food and flavor analysis, and identification of unknown samples, including that of material samples obtained from planet Mars during probe missions as early as the 1970s. GC–MS can also be used in airport security to detect substances in luggage or on human beings. Additionally, it can identify trace elements in materials that were previously thought to have disintegrated beyond identification. Like liquid chromatography–mass spectrometry, it allows analysis and detection even of tiny amounts of a substance.

<span class="mw-page-title-main">Pentachlorophenol</span> Chemical compound

Pentachlorophenol (PCP) is an organochlorine compound used as a pesticide and a disinfectant. First produced in the 1930s, it is marketed under many trade names. It can be found as pure PCP, or as the sodium salt of PCP, the latter of which dissolves easily in water. It can be biodegraded by some bacteria, including Sphingobium chlorophenolicum.

<span class="mw-page-title-main">Endrin</span> Chemical compound

Endrin is an organochlorine compound with the chemical formula C12H8Cl6O that was first produced in 1950 by Shell and Velsicol Chemical Corporation. It was primarily used as an insecticide, as well as a rodenticide and piscicide. It is a colourless, odorless solid, although commercial samples are often off-white. Endrin was manufactured as an emulsifiable solution known commercially as Endrex. The compound became infamous as a persistent organic pollutant and for this reason it is banned in many countries.

<span class="mw-page-title-main">Soil contamination</span> Pollution of land by human-made chemicals or other alteration

Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The most common chemicals involved are petroleum hydrocarbons, polynuclear aromatic hydrocarbons, solvents, pesticides, lead, and other heavy metals. Contamination is correlated with the degree of industrialization and intensity of chemical substance. The concern over soil contamination stems primarily from health risks, from direct contact with the contaminated soil, vapour from the contaminants, or from secondary contamination of water supplies within and underlying the soil. Mapping of contaminated soil sites and the resulting clean ups are time-consuming and expensive tasks, and require expertise in geology, hydrology, chemistry, computer modelling, and GIS in Environmental Contamination, as well as an appreciation of the history of industrial chemistry.

<span class="mw-page-title-main">Environmental monitoring</span> Monitoring of the quality of the environment

Environmental monitoring is the processes and activities that are done to characterize and describe the state of the environment. It is used in the preparation of environmental impact assessments, and in many circumstances in which human activities may cause harmful effects on the natural environment. Monitoring strategies and programs are generally designed to establish the current status of an environment or to establish a baseline and trends in environmental parameters. The results of monitoring are usually reviewed, analyzed statistically, and published. A monitoring program is designed around the intended use of the data before monitoring starts.

Water chemistry analyses are carried out to identify and quantify the chemical components and properties of water samples. The type and sensitivity of the analysis depends on the purpose of the analysis and the anticipated use of the water. Chemical water analysis is carried out on water used in industrial processes, on waste-water stream, on rivers and stream, on rainfall and on the sea. In all cases the results of the analysis provides information that can be used to make decisions or to provide re-assurance that conditions are as expected. The analytical parameters selected are chosen to be appropriate for the decision-making process or to establish acceptable normality. Water chemistry analysis is often the groundwork of studies of water quality, pollution, hydrology and geothermal waters. Analytical methods routinely used can detect and measure all the natural elements and their inorganic compounds and a very wide range of organic chemical species using methods such as gas chromatography and mass spectrometry. In water treatment plants producing drinking water and in some industrial processes using products with distinctive taste and odors, specialized organoleptic methods may be used to detect smells at very low concentrations.

In environmental toxicology, effects range low (ERL) and effects range median (ERM) are measures of toxicity in marine sediment. They are used by public agencies in the United States in formulating guidelines in assessing toxicity hazards, in particular from trace metals or organic contaminants.

<span class="mw-page-title-main">Mussel Watch Program</span>

The U.S. National Oceanic and Atmospheric Administration (NOAA) National Status and Trends (NS&T) Mussel Watch Program is a water contaminant monitoring program that started in 1986..The program was inspired by Dr. Ed Goldberg at Scripps Institute of Oceanography, but was conceived and designed at a workshop sponsored by NOAA, held at Battelle Ocean Sciences in 1984, and led by Dr. Paul D. Boehm. It is the longest running continuous contaminant monitoring program of its kind in the United States. Mussel Watch monitors the concentration of contaminants in bivalves and sediments in the coastal waters of the U.S., including the Great Lakes, to monitor bivalve health and by extension the health of their local and regional environment.

A polar organic chemical integrative sampler (POCIS) is a passive sampling device which allows for the in situ collection of a time-integrated average of hydrophilic organic contaminants developed by researchers with the United States Geological Survey in Columbia, Missouri. POCIS provides a means for estimating the toxicological significance of waterborne contaminants. The POCIS sampler mimics the respiratory exposure of organisms living in the aquatic environment and can provide an understanding of bioavailable contaminants present in the system. POCIS can be deployed in a wide range of aquatic environments and is commonly used to assist in environmental monitoring studies.

Equilibrium partitioning Sediment Benchmarks (ESBs) are a type of Sediment Quality Guideline (SQG) derived by the US Environmental Protection Agency (EPA) for the protection of benthic organisms. ESBs are based on the bioavailable concentration of contaminants in sediments rather than the dry-weight concentration. It has been demonstrated that sediment concentrations on a dry-weight basis often do not predict biological effects. Interstitial water concentrations, however, predict biological effects much better. This is true because the chemical present in the interstitial water (or pore water) is the uncomplexed/free phase of the chemical that is bioavailable and toxic to benthic organisms. Other phases of the chemical are bound to sediment particles like organic carbon (OC) or acid volatile sulfides (AVS) and are not bioavailable. Thus the interstitial water concentration is important to consider for effects to benthic organisms.

Semipermeable membrane devices (SPMD) are passive sampling devices used to monitor trace levels of organic compounds with a log Kow > 3. SPMDs are an effective way of monitoring the concentrations of chemicals from anthropogenic runoff and pollution in the marine environment because of their ability to detect minuscule levels of chemical. The data collected from a passive sampler is important for examining the amount of chemical in the environment and can therefore be used to formulate other scientific research about the effects of those chemicals on the organisms as well as the environment. Examples of chemicals commonly measured using SPMDs include: PAHs, PCBs, PBDEs, dioxins and furans as well as hydrophobic waste-water effluents like fragrances, triclosan, and phthalates.

<span class="mw-page-title-main">Robert E. Finnigan</span> American electrical engineer (1927–2022)

Robert Emmet Finnigan was an American pioneer in the development of gas chromatography–mass spectrometry equipment (GC/MS). Finnigan founded the Scientific Instruments Division of Electronic Associates, Inc., producing the first commercial quadrupole mass spectrometer in 1964. He then formed Finnigan Instruments Corporation to combine a computer system with a quadrupole mass spectrometer and gas chromatograph. Finnigan's GC/MS/computer systems are used to detect and identify trace organic compounds, making them important instruments for the monitoring and protection of the environment. They were adopted by the United States Environmental Protection Agency as a standard instrument for monitoring water quality and were fundamental to the work of the EPA.

Contaminants of emerging concern (CECs) is a term used by water quality professionals to describe pollutants that have been detected in environmental monitoring samples, that may cause ecological or human health impacts, and typically are not regulated under current environmental laws. Sources of these pollutants include agriculture, urban runoff and ordinary household products and pharmaceuticals that are disposed to sewage treatment plants and subsequently discharged to surface waters.

Toxic units (TU) are used in the field of toxicology to quantify the interactions of toxicants in binary mixtures of chemicals. A toxic unit for a given compound is based on the concentration at which there is a 50% effect for a certain biological endpoint. One toxic unit is equal to the EC50 for a given endpoint for a specific biological effect over a given amount of time. Toxic units allow for the comparison of the individual toxicities of a binary mixture to the combined toxicity. This allows researchers to categorize mixtures as additive, synergistic or antagonistic. Synergism and antagonism are defined by mixtures that are more or less toxic than predicted by the sum of their toxic units.

<span class="mw-page-title-main">Passive sampling</span>

Passive sampling is an environmental monitoring technique involving the use of a collecting medium, such as a man-made device or biological organism, to accumulate chemical pollutants in the environment over time. This is in contrast to grab sampling, which involves taking a sample directly from the media of interest at one point in time. In passive sampling, average chemical concentrations are calculated over a device's deployment time, which avoids the need to visit a sampling site multiple times to collect multiple representative samples. Currently, passive samplers have been developed and deployed to detect toxic metals, pesticides, pharmaceuticals, radionuclides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and other organic compounds in water, while some passive samplers can detect hazardous substances in the air.

Within the environmental sciences, screening broadly refers to a set of analytical techniques used to monitor levels of potentially hazardous organic compounds in the environment, particularly in tandem with mass spectrometry techniques. Such screening techniques are typically classified as either targeted, where compounds of interest are chosen before the analysis begins, or non-targeted, where compounds of interest are chosen at a later stage of the analysis. These two techniques can be organized into at least three approaches: target screening, using reference standards that are analogous to the target compound; suspect screening, which uses a library of cataloged data such as exact mass, isotope patterns, and chromatographic retention times in lieu of reference standards; and non-target screening, using no pre-existing knowledge for comparison before analysis. As such, target screening is most useful when monitoring the presence of specific organic compounds—particularly for regulatory purposes—which requires higher selectivity and sensitivity. When the number of detected compounds and associated metabolites needs to be maximized for discovering new or emerging environmental trends or biomarkers for disease, a more non-targeted approach has traditionally been used. However, the rapid improvement of mass spectrometers into more high-resolution forms, with increased sensitivity, has made suspect and non-target screening more attractive, either as stand-alone approaches or in conjunction with more targeted methods.

References

  1. Williams, Ian. Environmental Chemistry, A Modular Approach. Wiley. 2001. ISBN   0-471-48942-5
  2. "Glossary to the Buzzards Bay Watershed Management Plan". Archived from the original on 2016-10-09. Retrieved 2006-03-23.
  3. American Meteorological Society. Glossary of Meteorology Archived 2011-09-20 at the Wayback Machine
  4. North Carolina State University. Department of Soil Science. "Glossary." Archived 2014-09-18 at the Wayback Machine
  5. Global Resource Action Center for the Environment (GRACE). New York, NY. Sustainable Table: Dictionary Archived 2012-08-24 at the Wayback Machine
  6. Harrison, R.M (edited by). Understanding Our Environment, An Introduction to Environmental Chemistry and Pollution, Third Edition. Royal Society of Chemistry. 1999. ISBN   0-85404-584-8
  7. Briffa, Jessica; Sinagra, Emmanuel; Blundell, Renald (September 8, 2020). "Heavy metal pollution in the environment and their toxicological effects on humans". Heliyon. 6 (9).
  8. United States Environmental Protection Agency (EPA). Washington, DC. "Protecting Water Quality from Agricultural Runoff." Document No. EPA 841-F-05-001. March 2005.
  9. EPA. "Protecting Water Quality from Urban Runoff." Document No. EPA 841-F-03-003. February 2003.
  10. Sigel, A. (2010). Sigel, H.; Sigel, R.K.O. (eds.). Organometallics in Environment and Toxicology. Metal Ions in Life Sciences. Vol. 7. Cambridge: RSC publishing. ISBN   978-1-84755-177-1.
  11. vanLoon, Gary W.; Duffy, Stephen J. (2000). Environmental Chemistry . Oxford: Oxford. pp.  7. ISBN   0-19-856440-6.
  12. "Clean Water Act Analytical Methods". EPA. 2022-07-27.
  13. "Hazardous Waste Test Methods / SW-846". EPA. 2022-06-15.
  14. Eaton, Andrew D.; Greenberg, Arnold E.; Rice, Eugene W.; Clesceri, Lenore S.; Franson, Mary Ann H., eds. (2005). Standard Methods For the Examination of Water and Wastewater (21 ed.). American Public Health Association. ISBN   978-0-87553-047-5. Also available on CD-ROM and online by subscription.

Further reading