Technogaianism

Last updated

Technogaianism (a portmanteau word combining "techno-" for technology and "gaian" for Gaia philosophy) is a bright green environmentalist stance of active support for the research, development and use of emerging and future technologies to help restore Earth's environment. Technogaianists argue that developing safe, clean, alternative technology should be an important goal of environmentalists and environmentalism. [1]

Contents

Philosophy

This point of view is different from the default position of radical environmentalists and a common opinion that all technology necessarily degrades the environment, and that environmental restoration can therefore occur only with reduced reliance on technology. Technogaianists argue that technology gets cleaner and more efficient with time. They would also point to such things as hydrogen fuel cells to demonstrate that developments do not have to come at the environment's expense. More directly, they argue that such things as nanotechnology and biotechnology can directly reverse environmental degradation. Molecular nanotechnology, for example, could convert garbage in landfills into useful materials and products, while biotechnology could lead to novel microbes that devour hazardous waste. [1]

While many environmentalists[ who? ] still contend that most technology is detrimental to the environment, technogaianists point out that it has been in humanity's best interests to exploit the environment mercilessly until fairly recently. This sort of behavior follows accurately to current understandings of evolutionary systems, in that when new factors (such as foreign species or mutant subspecies) are introduced into an ecosystem, they tend to maximize their own resource consumption until either, a) they reach an equilibrium beyond which they cannot continue unmitigated growth, or b) they become extinct. In these models, it is completely impossible for such a factor to totally destroy its host environment, though they may precipitate major ecological transformation before their ultimate eradication.[ citation needed ] Technogaianists believe humanity has currently reached just such a threshold, and that the only way for human civilization to continue advancing is to accept the tenets of technogaianism and limit future exploitive exhaustion of natural resources and minimize further unsustainable development or face the widespread, ongoing mass extinction of species. [2] The destructive effects of modern civilization can be mitigated by technological solutions, such as using nuclear power. Furthermore, technogaianists argue that only science and technology can help humanity be aware of, and possibly develop counter-measures for, risks to civilization, humans and planet Earth such as a possible impact event. [1]

Sociologist James Hughes mentions Walter Truett Anderson, author of To Govern Evolution: Further Adventures of the Political Animal, as an example of a technogaian political philosopher; [3] argues that technogaianism applied to environmental management is found in the reconciliation ecology writings such as Michael Rosenzweig's Win-Win Ecology: How The Earth's Species Can Survive In The Midst of Human Enterprise; [2] and considers Bruce Sterling's Viridian design movement to be an exemplary technogaian initiative. [1] [4]

The theories of English writer Fraser Clark may be broadly categorized as technogaian. [ according to whom? ] Clark advocated "balancing the hippie right brain with the techno left brain". The idea of combining technology and ecology was extrapolated at length by a South African eco-anarchist project in the 1990s. The Kagenna Magazine project aimed to combine technology, art, and ecology in an emerging movement that could restore the balance between humans and nature.

George Dvorsky suggests the sentiment of technogaianism is to heal the Earth, use sustainable technology, and create ecologically diverse environments. [5] Dvorsky argues that defensive counter measures could be designed to counter the harmful effects of asteroid impacts, earthquakes, and volcanic eruptions. [5] Dvorksky also suggest that genetic engineering could be used to reduce the environmental impact humans have on the earth. [5]

Methods

Environmental monitoring

The Delta II rocket with climate research satellites, CloudSat and CALIPSO, on Launch Pad SLC-2W, VAFB Delta II 7420 on Launch Pad SLC-2W.jpg
The Delta II rocket with climate research satellites, CloudSat and CALIPSO, on Launch Pad SLC-2W, VAFB

Technology facilities the sampling, testing, and monitoring of various environments and ecosystems. NASA uses space-based observations to conduct research on solar activity, sea level rise, the temperature of the atmosphere and the oceans, the state of the ozone layer, air pollution, and changes in sea ice and land ice. [6]

Geoengineering

Climate engineering is a technogaian method that uses two categories of technologies- carbon dioxide removal and solar radiation management. Carbon dioxide removal addresses a cause of climate change by removing one of the greenhouse gases from the atmosphere. Solar radiation management attempts to offset the effects of greenhouse gases by causing the Earth to absorb less solar radiation.

Earthquake engineering is a technogaian method concerned with protecting society and the natural and man-made environment from earthquakes by limiting the seismic risk to acceptable levels. [7] Another example of a technogaian practice is an artificial closed ecological system used to test if and how people could live and work in a closed biosphere, while carrying out scientific experiments. It is in some cases used to explore the possible use of closed biospheres in space colonization, and also allows the study and manipulation of a biosphere without harming Earth's. [8] The most advanced technogaian proposal is the "terraforming" of a planet, moon, or other body by deliberately modifying its atmosphere, temperature, or ecology to be similar to those of Earth in order to make it habitable by humans. [9]

Genetic engineering

S. Matthew Liao, professor of philosophy and bioethics at New York University, claims that the human impact on the environment could be reduced by genetically engineering humans to have, a smaller stature, an intolerance to eating meat, and an increased ability to see in the dark, thereby using less lighting. [10] Liao argues that human engineering is less risky than geoengineering. [11]

Genetically modified foods have reduced the amount of herbicide and insecticide needed for cultivation. The development of glyphosate-resistant (Roundup Ready) plants has changed the herbicide use profile away from more environmentally persistent herbicides with higher toxicity, such as atrazine, metribuzin and alachlor, and reduced the volume and danger of herbicide runoff. [12]

An environmental benefit of Bt-cotton and maize is reduced use of chemical insecticides. [13] [14] A PG Economics study concluded that global pesticide use was reduced by 286,000 tons in 2006, decreasing the environmental impact of herbicides and pesticides by 15%. [15] A survey of small Indian farms between 2002 and 2008 concluded that Bt cotton adoption had led to higher yields and lower pesticide use. [16] Another study concluded insecticide use on cotton and corn during the years 1996 to 2005 fell by 35,600,000 kilograms (78,500,000 lb) of active ingredient, which is roughly equal to the annual amount applied in the EU. [17] A Bt cotton study in six northern Chinese provinces from 1990 to 2010 concluded that it halved the use of pesticides and doubled the level of ladybirds, lacewings and spiders and extended environmental benefits to neighbouring crops of maize, peanuts and soybeans. [18] [19]

Examples of implementation

See also

Related Research Articles

<i>Bacillus thuringiensis</i> Species of bacteria used as an insecticide

Bacillus thuringiensis is a gram-positive, soil-dwelling bacterium, the most commonly used biological pesticide worldwide. B. thuringiensis also occurs naturally in the gut of caterpillars of various types of moths and butterflies, as well on leaf surfaces, aquatic environments, animal feces, insect-rich environments, flour mills and grain-storage facilities. It has also been observed to parasitize moths such as Cadra calidella—in laboratory experiments working with C. calidella, many of the moths were diseased due to this parasite.

The carrying capacity of an environment is the maximum population size of a biological species that can be sustained by that specific environment, given the food, habitat, water, and other resources available. The carrying capacity is defined as the environment's maximal load, which in population ecology corresponds to the population equilibrium, when the number of deaths in a population equals the number of births. Carrying capacity of the environment implies that the resources extraction is not above the rate of regeneration of the resources and the wastes generated are within the assimilating capacity of the environment. The effect of carrying capacity on population dynamics is modelled with a logistic function. Carrying capacity is applied to the maximum population an environment can support in ecology, agriculture and fisheries. The term carrying capacity has been applied to a few different processes in the past before finally being applied to population limits in the 1950s. The notion of carrying capacity for humans is covered by the notion of sustainable population.

Environmental science is an interdisciplinary academic field that integrates physics, biology, meteorology, mathematics and geography to the study of the environment, and the solution of environmental problems. Environmental science emerged from the fields of natural history and medicine during the Enlightenment. Today it provides an integrated, quantitative, and interdisciplinary approach to the study of environmental systems.

<i>I = PAT</i> Equates human impact on the environment

I = (PAT) is the mathematical notation of a formula put forward to describe the impact of human activity on the environment.

<span class="mw-page-title-main">Pesticide resistance</span> Decreased effectiveness of a pesticide on a pest

Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring. If a pest has resistance then that will reduce the pesticide's efficacy – efficacy and resistance are inversely related.

<span class="mw-page-title-main">Natural environment</span> Living and non-living things on Earth

The natural environment or natural world encompasses all biotic and abiotic things occurring naturally, meaning in this case not artificial. The term is most often applied to Earth or some parts of Earth. This environment encompasses the interaction of all living species, climate, weather and natural resources that affect human survival and economic activity. The concept of the natural environment can be distinguished as components:

<span class="mw-page-title-main">Agrochemical</span> Any chemical used in agriculture

An agrochemical or agrichemical, a contraction of agricultural chemical, is a chemical product used in industrial agriculture. Agrichemical typically refers to biocides alongside synthetic fertilizers. It may also include hormones and other chemical growth agents. Though the application of mineral fertilizers and pesticidal chemicals has a long history, the majority of agricultural chemicals were developed from the 19th century, and their use were expanded significantly during the Green Revolution and the late 20th century. Agriculture that uses these chemicals is frequently called conventional agriculture.

<span class="mw-page-title-main">Human impact on the environment</span> Impact of human life on Earth and environment

Human impact on the environment refers to changes to biophysical environments and to ecosystems, biodiversity, and natural resources caused directly or indirectly by humans. Modifying the environment to fit the needs of society is causing severe effects including global warming, environmental degradation, mass extinction and biodiversity loss, ecological crisis, and ecological collapse. Some human activities that cause damage to the environment on a global scale include population growth, neoliberal economic policies and rapid economic growth, overconsumption, overexploitation, pollution, and deforestation. Some of the problems, including global warming and biodiversity loss, have been proposed as representing catastrophic risks to the survival of the human species.

<span class="mw-page-title-main">Environmentalism</span> Philosophy about Earth protection

Environmentalism or environmental rights is a broad philosophy, ideology, and social movement about supporting life, habitats, and surroundings. While environmentalism focuses more on the environmental and nature-related aspects of green ideology and politics, ecologism combines the ideology of social ecology and environmentalism. Ecologism is more commonly used in continental European languages, while environmentalism is more commonly used in English but the words have slightly different connotations.

<span class="mw-page-title-main">Genetically modified crops</span> Plants used in agriculture

Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

Forest integrated pest management or Forest IPM is the practice of monitoring and managing pest and environmental information with pest control methods to prevent pest damage to forests and forest habitats by the most economical means.

Bt cotton is a genetically modified pest resistant plant cotton variety that produces an insecticide to combat bollworm.

Bright green environmentalism is an environmental philosophy and movement that emphasizes the use of advanced technology, social innovation, eco-innovation, and sustainable design to address environmental challenges. This approach contrasts with more traditional forms of environmentalism that may advocate for reduced consumption or a return to simpler lifestyles.

<span class="mw-page-title-main">Pesticide drift</span> Diffusion of pesticides into the environment

Pesticide drift, also known as spray drift refers to the unintentional diffusion of pesticides toward nontarget species. It is one of the most negative effects of pesticide application. Drift can damage human health, environment, and crops. Together with runoff and leaching, drift is a mechanism for agricultural pollution. Some drift results from contamination of sprayer tanks.

<span class="mw-page-title-main">Environmental impact of pesticides</span> Environmental effect

The environmental effects of pesticides describe the broad series of consequences of using pesticides. The unintended consequences of pesticides is one of the main drivers of the negative impact of modern industrial agriculture on the environment. Pesticides, because they are toxic chemicals meant to kill pest species, can affect non-target species, such as plants, animals and humans. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields. Other agrochemicals, such as fertilizers, can also have negative effects on the environment.

This page is an index of sustainability articles.

The natural environment, commonly referred to simply as the environment, includes all living and non-living things occurring naturally on Earth.

Environmentally sustainable design is the philosophy of designing physical objects, the built environment, and services to comply with the principles of ecological sustainability and also aimed at improving the health and comfort of occupants in a building. Sustainable design seeks to reduce negative impacts on the environment, the health and well-being of building occupants, thereby improving building performance. The basic objectives of sustainability are to reduce the consumption of non-renewable resources, minimize waste, and create healthy, productive environments.

The following outline is provided as an overview of and topical guide to environmentalism:

<span class="mw-page-title-main">Ecomodernism</span> Environmental philosophy

Ecomodernism is an environmental philosophy which argues that technological development can protect nature and improve human wellbeing through eco-economic decoupling, i.e., by separating economic growth from environmental impacts.

References

  1. 1 2 3 4 Hughes, James (2004). Citizen Cyborg: Why Democratic Societies Must Respond to the Redesigned Human of the Future. Westview Press. ISBN   0-8133-4198-1.
  2. 1 2 Rosenzweig, Michael (2005). Win-Win Ecology: How The Earth's Species Can Survive In The Midst of Human Enterprise . Clarendon Press. ISBN   0-19-515604-8.
  3. Anderson, Walter Truett (1987). To Govern Evolution: Further Adventures of the Political Animal . Harcourt. ISBN   0-15-190483-9.
  4. Sterling, Bruce (2001). "Viridian: The Manifesto of January 3, 2000" . Retrieved 2007-01-28.{{cite journal}}: Cite journal requires |journal= (help)
  5. 1 2 3 George Dvorsky, 7 Best-Case Scenarios for the Future of Humanity, Sentient Developments, (Feb. 2, 2013).
  6. Global Climate Change: Vital Signs of the Planet: NASA's Role, Taking a global perspective on Earth's climate
  7. Bozorgnia, Yousef; Bertero, Vitelmo V. (2004). Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering. CRC Press. ISBN   978-0-8493-1439-1.
  8. Gitelson, I. I.; Lisovsky, G. M. & MacElroy, R. D. (2003). Manmade Closed Ecological Systems. Taylor & Francis. ISBN   0-415-29998-5.
  9. Zubrin, Robert, The Case for Mars: The Plan to Settle the Red Planet and Why We Must , pp. 248-249, Simon & Schuster/Touchstone, 1996, ISBN   0-684-83550-9
  10. Ross Anderson, How Engineering the Human Body Could Combat Climate Change, The Atlantic, (March 12, 2012).
  11. S. Mathew Liao, Human Engineering and Climate Change, (Feb. 12, 2012).
  12. Shipitalo MJ, Malone RW, Owens LB (2008). "Impact of Glyphosate-Tolerant Soybean and Glufosinate-Tolerant Corn Production on Herbicide Losses in Surface Runoff". Journal of Environmental Quality. 37 (2): 401–8. doi: 10.2134/jeq2006.0540 . PMID   18268303.
  13. Roh JY, Choi JY, Li MS, Jin BR, Je YH (April 2007). "Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control". J. Microbiol. Biotechnol. 17 (4): 547–59. PMID   18051264.
  14. Marvier M, McCreedy C, Regetz J, Kareiva P (June 2007). "A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates". Science. 316 (5830): 1475–7. Bibcode:2007Sci...316.1475M. doi:10.1126/science.1139208. PMID   17556584. S2CID   23172622.
  15. Brookes, Graham & Barfoot, Peter (2008) Global Impact of Biotech Crops: Socio-Economic and Environmental Effects, 1996-2006 AgBioForum, Volume 11, Number 1, Article 3. Retrieved 12 August 2010
  16. Krishna, Vijesh V.; Qaim, Matin (2012). "Bt cotton and sustainability of pesticide reductions in India". Agricultural Systems. 107: 47–55. doi:10.1016/j.agsy.2011.11.005.
  17. Kovach J, Petzoldt C, Degni J, Tette J. "A Method to Measure the Environmental Impact of Pesticides". New York State Agricultural Experiment Station. Retrieved 23 November 2008.
  18. Carrington, Damien (13 June 2012) GM crops good for environment, study finds The Guardian. Retrieved 16 June 2012
  19. Lu, Yanhui; Wu, Kongming; Jiang, Yuying; Guo, Yuyuan; Desneux, Nicolas (2012). "Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services". Nature. 487 (7407): 362–5. Bibcode:2012Natur.487..362L. doi:10.1038/nature11153. PMID   22722864. S2CID   4415298.
  20. Jan Suszkiw (November 1999). "Tifton, Georgia: A Peanut Pest Showdown". Agricultural Research magazine. Archived from the original on 12 October 2008. Retrieved 2008-11-23.