Heliostat

Last updated
Heliostat by the Viennese instrument maker Ekling (c. 1850) Ekling Heliostat.JPG
Heliostat by the Viennese instrument maker Ekling (c. 1850)
A heliostat at the THEMIS experimental station in France. The mirror rotates on an altazimuth mount. Heliostat.jpg
A heliostat at the THÉMIS experimental station in France. The mirror rotates on an altazimuth mount.
The Solar Two solar-thermal power project near Daggett, California. Every mirror in the field of heliostats reflects sunlight continuously onto the receiver on the tower. Solar two.jpg
The Solar Two solar-thermal power project near Daggett, California. Every mirror in the field of heliostats reflects sunlight continuously onto the receiver on the tower.
The 11MW PS10 near Seville in Spain. When this picture was taken, dust in the air made the converging light visible. PS10 solar power tower 2.jpg
The 11MW PS10 near Seville in Spain. When this picture was taken, dust in the air made the converging light visible.
The solar furnace at Odeillo in the Pyrenees-Orientales in France can reach temperatures up to 3,500 degC (6,330 degF) Font Romeu France.jpg
The solar furnace at Odeillo in the Pyrenees-Orientales in France can reach temperatures up to 3,500 °C (6,330 °F)

A heliostat (from helios , the Greek word for sun, and stat, as in stationary) is a device that includes a mirror, usually a plane mirror, which turns so as to keep reflecting sunlight toward a predetermined target, compensating for the Sun's apparent motions in the sky.

Contents

The target may be a physical object, distant from the heliostat, or a direction in space. To do this, the reflective surface of the mirror is kept perpendicular to the bisector of the angle between the directions of the Sun and the target as seen from the mirror. In almost every case, the target is stationary relative to the heliostat, so the light is reflected in a fixed direction. According to contemporary sources the heliostata, as it was called at first, was invented by Willem 's Gravesande (1688–1742). [1] Other contenders are Giovanni Alfonso Borelli (1608–1679) and Daniel Gabriel Fahrenheit (1686–1736). [2] A heliostat designed by George Johnstone Storey is in the Science Museum Group collection. [3]

Currently, most heliostats are used for daylighting or for the production of concentrated solar power, usually to generate electricity. They are also sometimes used in solar cooking. A few are used experimentally to reflect motionless beams of sunlight into solar telescopes. Before the availability of lasers and other electric lights, heliostats were widely used to produce intense, stationary beams of light for scientific and other purposes.

Most modern heliostats are controlled by computers. The computer is given the latitude and longitude of the heliostat's position on the Earth and the time and date. From these, using astronomical theory, it calculates the direction of the Sun as seen from the mirror, e.g. its compass bearing and angle of elevation. Then, given the direction of the target, the computer calculates the direction of the required angle-bisector, and sends control signals to motors, often stepper motors, so they turn the mirror to the correct alignment. This sequence of operations is repeated frequently to keep the mirror properly oriented.

Large installations such as solar-thermal power stations include fields of heliostats comprising many mirrors. Usually, all the mirrors in such a field are controlled by a single computer.

There are older types of heliostat which do not use computers, including ones that are partly or wholly operated by hand or by clockwork, or are controlled by light-sensors. These are now quite rare.

Heliostats should be distinguished from solar trackers or sun-trackers that point directly at the sun in the sky. However, some older types of heliostat incorporate solar trackers, together with additional components to bisect the sun-mirror-target angle.

A siderostat is a similar device which is designed to follow a fainter star, rather than the Sun.

Large-scale projects

In a solar-thermal power plant, like those of The Solar Project or the PS10 plant in Spain, a wide field of heliostats focuses the Sun's power onto a single collector to heat a medium such as water or molten salt. The medium travels through a heat exchanger to heat water, produce steam, and then generate electricity through a steam turbine.

A somewhat different arrangement of heliostats in a field is used at experimental solar furnaces, such as the one at Odeillo, in France. All the heliostat mirrors send accurately parallel beams of light into a large paraboloidal reflector which brings them to a precise focus. The mirrors have to be located close enough to the axis of the paraboloid to reflect sunlight into it along lines parallel to the axis, so the field of heliostats has to be narrow. A closed loop control system is used. Sensors determine if any of the heliostats is slightly misaligned. If so, they send signals to correct it.

It has been proposed that the high temperatures generated could be used to split water producing hydrogen sustainably. [4]

Small-scale projects

Smaller heliostats are used for daylighting and heating. Instead of many large heliostats focusing on a single target to concentrate solar power (as in a solar power tower plant), a single heliostat usually about 1 or 2 square meters in size reflects non-concentrated sunlight through a window or skylight. A small heliostat, installed outside on the ground or on a building structure like a roof, moves on two axes (up/down and left/right) in order to compensate for the constant movement of the Sun. In this way, the reflected sunlight stays fixed on the target (e.g. window).

Genzyme Center, corporate headquarters of Genzyme Corp. in Cambridge, Massachusetts, uses heliostats on the roof to direct sunlight into its12-story atrium. [5] [6]

In a 2009 article, Bruce Rohr suggested that small heliostats could be used like a solar power tower system. [7] :7–12 Instead of occupying hundreds of acres, the system would fit in a much smaller area, like the flat rooftop of a commercial building, he said. The proposed system would use the power in sunlight to heat and cool a building or to provide input for thermal industrial processes like processing food. The cooling would be performed with an absorption chiller. Rohr proposed that the system would be "more reliable and more cost-effective per square meter of reflective area" than large solar power tower plants, in part because it would not be sacrificing 80 percent of the power collected in the process of converting it to electricity. [7] :9

Design

Heliostat costs represent 30-50% of the initial capital investment for solar power tower power plants depending on the energy policy and economic framework in the location country. [8] [9] It is of interest to design less expensive heliostats for large-scale manufacturing, so that solar power tower power plants may produce electricity at costs more competitive to conventional coal or nuclear power plants costs.

Besides cost, percent solar reflectivity (i.e. albedo) and environmental durability are factors that should be considered when comparing heliostat designs.

A Heliostat and External receiver.jpg

One way that engineers and researchers are attempting to lower the costs of heliostats is by replacing the conventional heliostat design with one that uses fewer, lighter materials. A conventional design for the heliostat's reflective components utilizes a second surface mirror. The sandwich-like mirror structure generally consists of a steel structural support, an adhesive layer, a protective copper layer, a layer of reflective silver, and a top protective layer of thick glass. [8] This conventional heliostat is often referred to as a glass/metal heliostat. Alternative designs incorporate recent adhesive, composite, and thin film research to bring about materials costs and weight reduction. Some examples of alternative reflector designs are silvered polymer reflectors, glass fiber reinforced polyester sandwiches (GFRPS), and aluminized reflectors. [10] Problems with these more recent designs include delamination of the protective coatings, reduction in percent solar reflectivity over long periods of sun exposure, and high manufacturing costs.

Tracking alternatives

The movement of most modern heliostats employs a two-axis motorized system, controlled by computer as outlined at the start of this article. Almost always, the primary rotation axis is vertical and the secondary horizontal, so the mirror is on an alt-azimuth mount.

One simple alternative is for the mirror to rotate around a polar aligned primary axis, driven by a mechanical, often clockwork, mechanism at 15 degrees per hour, compensating for the Earth's rotation relative to the Sun. The mirror is aligned to reflect sunlight along the same polar axis in the direction of one of the celestial poles. There is a perpendicular secondary axis allowing occasional manual adjustment of the mirror (daily or less often as necessary) to compensate for the shift in the Sun's declination with the seasons. The setting of the drive clock can also be occasionally adjusted to compensate for changes in the Equation of Time. The target can be located on the same polar axis that is the mirror's primary rotation axis, or a second, stationary mirror can be used to reflect light from the polar axis toward the target, wherever that might be. This kind of mirror mount and drive is often used with solar cookers, such as Scheffler reflectors. [11] [12] [13] For this application, the mirror can be concave, so as to concentrate sunlight onto the cooking vessel.

The alt-azimuth and polar-axis alignments are two of the three orientations for two-axis mounts that are, or have been, commonly used for heliostat mirrors. The third is the target-axis arrangement in which the primary axis points toward the target at which sunlight is to be reflected. The secondary axis is perpendicular to the primary one. Heliostats controlled by light-sensors have used this orientation. A small arm carries sensors that control motors that turn the arm around the two axes, so it points toward the sun, incorporating a solar tracker. A simple mechanical arrangement bisects the angle between the primary axis, pointing to the target, and the arm, pointing to the Sun. The mirror is mounted so its reflective surface is perpendicular to this bisector. This type of heliostat was used for daylighting prior to the availability of cheap computers, but after the initial availability of sensor control hardware.

There are heliostat designs which do not require the rotation axes to have any exact orientation. For example, there may be light-sensors close to the target which send signals to motors so that they correct the alignment of the mirror whenever the beam of reflected light drifts away from the target. The directions of the axes need be only approximately known, since the system is intrinsically self-correcting. However, there are disadvantages, such as that the mirror has to be manually realigned every morning and after any prolonged cloudy spell, since the reflected beam, when it reappears, misses the sensors, so the system cannot correct the orientation of the mirror. There are also geometrical problems which limit the functioning of the heliostat when the directions of the Sun and the target, as seen from the mirror, are very different. Because of the disadvantages, this design has never been commonly used, but some people do experiment with it.

Typically, the heliostat mirror moves at a rate that is 1/2 the angular motion of the Sun. There is another arrangement that satisfies the definition of a heliostat yet has a mirror motion that is 2/3rd of the motion of the Sun. [14]

Many other types of heliostat have also occasionally been used. In the very earliest heliostats, for example, which were used for daylighting in ancient Egypt, servants or slaves kept the mirrors aligned manually, without using any kind of mechanism. (There are places in Egypt where this is done today, for the benefit of tourists. In the 1997 film The Fifth Element an Egyptian boy holds a mirror to illuminate a wall inside a cave for a fictional archaeologist.) Elaborate clockwork heliostats were made during the 19th Century which could reflect sunlight to a target in any direction using only a single mirror, minimizing light losses, and which automatically compensated for the Sun's seasonal movements. Some of these devices are still to be seen in museums, but they are not used for practical purposes today. Amateurs sometimes come up with ad hoc designs which work approximately, in some particular location, without any theoretical justification. An essentially limitless number of such designs are possible.

See also

Related Research Articles

<span class="mw-page-title-main">Solar furnace</span> Focal point for concentrated sunlight; contains working fluid to be heated

A solar furnace is a structure that uses concentrated solar power to produce high temperatures, usually for industry. Parabolic mirrors or heliostats concentrate light (Insolation) onto a focal point. The temperature at the focal point may reach 3,500 °C (6,330 °F), and this heat can be used to generate electricity, melt steel, make hydrogen fuel or nanomaterials.

<span class="mw-page-title-main">Daylighting (architecture)</span> Practice of placing openings and reflective surfaces so that sunlight can provide internal lighting

Daylighting is the practice of placing windows, skylights, other openings, and reflective surfaces so that direct or indirect sunlight can provide effective internal lighting. Particular attention is given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy use. Energy savings can be achieved from the reduced use of artificial (electric) lighting or from passive solar heating. Artificial lighting energy use can be reduced by simply installing fewer electric lights where daylight is present or by automatically dimming or switching off electric lights in response to the presence of daylight – a process known as daylight harvesting.

<span class="mw-page-title-main">Parabolic reflector</span> Reflector that has the shape of a paraboloid

A parabolicreflector is a reflective surface used to collect or project energy such as light, sound, or radio waves. Its shape is part of a circular paraboloid, that is, the surface generated by a parabola revolving around its axis. The parabolic reflector transforms an incoming plane wave travelling along the axis into a spherical wave converging toward the focus. Conversely, a spherical wave generated by a point source placed in the focus is reflected into a plane wave propagating as a collimated beam along the axis.

<span class="mw-page-title-main">Solar thermal energy</span> Technology using sunlight for heat

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors. Solar thermal collectors are classified by the United States Energy Information Administration as low-, medium-, or high-temperature collectors. Low-temperature collectors are generally unglazed and used to heat swimming pools or to heat ventilation air. Medium-temperature collectors are also usually flat plates but are used for heating water or air for residential and commercial use.

<span class="mw-page-title-main">Parabolic trough</span> Technology used in concentrated solar power stations

A parabolic trough collector (PTC) is a type of solar thermal collector that is straight in one dimension and curved as a parabola in the other two, lined with a polished metal mirror. The sunlight which enters the mirror parallel to its plane of symmetry is focused along the focal line, where objects are positioned that are intended to be heated. In a solar cooker, for example, food is placed at the focal line of a trough, which is cooked when the trough is aimed so the Sun is in its plane of symmetry.

<span class="mw-page-title-main">Altazimuth mount</span> Support mechanism with rotation about the horizontal and vertical axes

An altazimuth mount or alt-azimuth mount is a simple two-axis mount for supporting and rotating an instrument about two perpendicular axes – one vertical and the other horizontal. Rotation about the vertical axis varies the azimuth of the pointing direction of the instrument. Rotation about the horizontal axis varies the altitude angle of the pointing direction.

<span class="mw-page-title-main">Solar mirror</span> Type of mirror designed for sunlight

A solar mirror contains a substrate with a reflective layer for reflecting the solar energy, and in most cases an interference layer. This may be a planar mirror or parabolic arrays of solar mirrors used to achieve a substantially concentrated reflection factor for solar energy systems.

<span class="mw-page-title-main">Solar Energy Generating Systems</span> Concentrated solar thermal power station in the Mojave Desert of California

Solar Energy Generating Systems (SEGS) is a concentrated solar power plant in California, United States. With the combined capacity from three separate locations at 354 megawatt (MW), it was for thirty years the world's largest solar thermal energy generating facility, until the commissioning of the even larger Ivanpah facility in 2014. It was also for thirty years the world's largest solar generating facility of any type of technology, until the commissioning of the photovoltaic Topaz Solar Farm in 2014. It consisted of nine solar power plants in California's Mojave Desert, where insolation is among the best available in the United States.

<span class="mw-page-title-main">Solar cooker</span> Device for cooking with the heat of sunlight

A solar cooker is a device which uses the energy of direct sunlight to heat, cook or pasteurize drink and other food materials. Many solar cookers currently in use are relatively inexpensive, low-tech devices, although some are as powerful or as expensive as traditional stoves, and advanced, large scale solar cookers can cook for hundreds of people. Because they use no fuel and cost nothing to operate, many nonprofit organizations are promoting their use worldwide in order to help reduce fuel costs and air pollution, and to help slow down deforestation and desertification.

<span class="mw-page-title-main">The Solar Project</span>

The SOLAR Project consists of the Solar One, Solar Two and Solar Tres solar thermal power plants based in the Mojave Desert, United States and Andalucía, Spain. The US Department of Energy (DOE) and a consortium of US utilities built the country's first two large-scale, demonstration solar power towers in the desert near Barstow, California.

<span class="mw-page-title-main">Solar tracker</span> Device that orients a payload towards the Sun

A solar tracker is a device that orients a payload toward the Sun. Payloads are usually solar panels, parabolic troughs, Fresnel reflectors, lenses, or the mirrors of a heliostat.

<span class="mw-page-title-main">Light tube</span> Architectural element

Light tubes are structures that transmit or distribute natural or artificial light for the purpose of illumination and are examples of optical waveguides.

<span class="mw-page-title-main">Solar power tower</span> Type of solar furnace with a tower receiving focused light

A solar power tower, also known as 'central tower' power plant or 'heliostat' power plant, is a type of solar furnace using a tower to receive focused sunlight. It uses an array of flat, movable mirrors to focus the sun's rays upon a collector tower. Concentrating Solar Power (CSP) systems are seen as one viable solution for renewable, pollution-free energy.

A compact linear Fresnel reflector (CLFR) – also referred to as a concentrating linear Fresnel reflector – is a specific type of linear Fresnel reflector (LFR) technology. They are named for their similarity to a Fresnel lens, in which many small, thin lens fragments are combined to simulate a much thicker simple lens. These mirrors are capable of concentrating the sun's energy to approximately 30 times its normal intensity.

Skyline Solar was a Concentrated Photovoltaic (CPV) company based in Mountain View, California. The company developed medium-concentration photovoltaic systems to produce electricity for commercial, industrial and utility scale solar markets. The company was founded in 2007 by Bob MacDonald, Bill Keating and Eric Johnson. The operation of the company appears to have ceased in late 2012 and the website is deactivated.

<span class="mw-page-title-main">Practical Solar</span> American heliostat manufacturer

Practical Solar, Inc. is an American manufacturer of heliostats used for concentrating solar power, as well as for residential and commercial natural lighting (daylighting) applications. The company, located in Boston, Massachusetts, introduced its heliostat system for sale in February 2009. According to the detailed agenda for the 5th Annual Conference on Clean Energy in Boston, Practical Solar’s chief operating officer David Howell made a presentation seeking funding for the company at the “Investor Pitch Session” on November 12, 2009.

<span class="mw-page-title-main">Leonard L. Northrup Jr.</span>

Leonard "Lynn" L. Northrup Jr. was an American engineer who was a pioneer of the commercialization of solar thermal energy. Influenced by the work of John Yellott, Maria Telkes, and Harry Tabor, Northrup's company designed, patented, developed and manufactured some of the first commercial solar water heaters, solar concentrators, solar-powered air conditioning systems, solar power towers and photovoltaic thermal hybrid systems in the United States. The company he founded became part of ARCO Solar, which in turn became BP Solar, which became the largest solar energy company in the world. Northrup was a prolific inventor with 14 US patents.

The following outline is provided as an overview of and topical guide to solar energy:

<span class="mw-page-title-main">Odeillo solar furnace</span> Monument in Font-Romeu-Odeillo-Via

The Odeillo solar furnace is the world's largest solar furnace. It is situated in Font-Romeu-Odeillo-Via, in the department of Pyrénées-Orientales, in the south of France. It is 48 metres (157 ft) high and 54 metres (177 ft) wide, and includes 63 heliostats. It was built between 1962 and 1968, started operating in 1969, and has a power of one megawatt.

<span class="mw-page-title-main">Solar furnace of Uzbekistan</span> Solar thermal energy

The solar furnace of Uzbekistan was built in 1981, and is located 45 kilometers away from Tashkent city. The furnace is the largest in Asia. It uses a curved mirror, or an array of mirrors, acting as a parabolic reflector, which can reach temperatures of up to 3,000 degrees Celsius. The solar furnace of Uzbekistan can be visited by the general public.

References

  1. A New and Complete Dictionary of Arts and Sciences, vol 2, London, 1763, p. 1600
  2. Pieter van der Star, Daniel Gabriel Fahrenheit's Letters to Leibniz and Boerhaave, Leiden, 1983, p. 7.
  3. "Heliostat, contrived by the late G. Johnstone Stoney, D.Sc., F.R.S., c. 1875". Science Museum Group . Retrieved 20 June 2022.
  4. Graf, D.; Monnerie, N.; Roeb, M.; Schmitz, M.; Sattler, C. (2008). "Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis". International Journal of Hydrogen Energy. 33 (17): 4511–4519. doi:10.1016/j.ijhydene.2008.05.086.
  5. U.S. Green Building Council: LEED Case Studies Archived 2009-12-01 at the Wayback Machine
  6. Interview with Lou Capozzi, Facilities Manager of Genzyme Center Archived January 8, 2010, at the Wayback Machine
  7. 1 2 Rohr, B. (Spring 2009). "The Promise of Small Heliostats" (PDF). Northeast Sun. Archived from the original (PDF) on 2010-12-26. Retrieved 2010-01-25.
  8. 1 2 Mar, R.; Swearengen, J. (1981). "Materials issues in solar thermal energy systems". Solar Energy Materials. 5: 37–41. Bibcode:1981SoEnM...5...37M. doi:10.1016/0165-1633(81)90057-5.
  9. Ortega, J. I.; Burgaleta, J. I.; Téllez, F. L. M. (2008). "Central Receiver System Solar Power Plant Using Molten Salt as Heat Transfer Fluid". Journal of Solar Energy Engineering. 130 (2): 024501–024506. doi:10.1115/1.2807210.
  10. Kennedy, C. E.; Terwilliger, K. (2005). "Optical Durability of Candidate Solar Reflectors". Journal of Solar Energy Engineering. 127 (2): 262–268. doi:10.1115/1.1861926.
  11. The Scheffler-Reflector Archived 2008-04-22 at the Wayback Machine , retrieved 5-June-2011
  12. Notes on Scheffler Community Kitchens Archived 2011-08-14 at the Wayback Machine David Delaney, rev 22-Feb-2009, retrieved 5-June-2011
  13. Illustration at solarcooking.org, downloaded 5-June-2011
  14. "Red Rock Energy Heliostats".

Further reading