Glossary of environmental science

Last updated

This is a glossary of environmental science.

Environmental science is the study of interactions among physical, chemical, and biological components of the environment. Environmental science provides an integrated, quantitative, and interdisciplinary approach to the study of environmental systems.

Contents

0-9

A

B

C

D

E

* available energy – energy with the potential to do work (exergy);
* delivered energy – energy delivered to and used by a household, usually gas and electricity;
* direct energy - the energy being currently used, used mostly at home (delivered energy) and for fuels used mainly for transport;
* embodied energy - t the energy expended over the entire life cycle of a good or service OR the energy involved in the extraction of basic materials, processing/manufacture, transport and disposal of a product OR the energy required to provide a good or service;
* geothermal energy – heat emitted from within the Earth’s crust as hot water or steam and used to generate electricity after transformation;
* hydro energy – potential and kinetic energy of water used to generate electricity;
* indirect energy – the energy generated in, and accounted for, by the wider economy as a consequence of an agent’s actions or demands;
* kinetic energy - the energy possessed by a body because of its motion;
* nuclear energy - energy released by reactions within atomic nuclei, as in nuclear fission or fusion (also called atomic energy);
* operational energy – the energy used in carrying out a particular operation;
* potential energy – the energy possessed by a body as a result of its position or condition e.g. coiled springs and charged batteries have potential energy;
* primary energy – forms of energy obtained directly from nature, the energy in raw fuels (electricity from the grid is not primary energy), used mostly in energy statistics when compiling energy balances;
* solar energy – solar radiation used for hot water production and electricity generation (does not include passive solar energy to heat and cool buildings etc.);
* secondary energy – primary energies are transformed in energy conversion processes to more convenient secondary forms such as electrical energy and cleaner fuels;
* stationary energy – that energy that is other than transport fuels and fugitive emissions, used mostly for production of electricity but also for manufacturing and processing and in agriculture, fisheries etc.;
* tidal/ocean/wave energy– mechanical energy from water movement used to generate electricity;
* useful energy – available energy used to increase system production and efficiency;
* wind energy – kinetic energy of wind used for electricity generation using turbines

F

G

H

I

J

K

L

considered ideal for gardening and agricultural uses.

M

N

O

P

R

S

T

U

V

W

Z

See also

Related Research Articles

<span class="mw-page-title-main">Mycelium</span> Vegetative part of a fungus

Mycelium is a root-like structure of a fungus consisting of a mass of branching, thread-like hyphae. Its normal form is that of branched, slender, entangled, anastomosing, hyaline threads. Fungal colonies composed of mycelium are found in and on soil and many other substrates. A typical single spore germinates into a monokaryotic mycelium, which cannot reproduce sexually; when two compatible monokaryotic mycelia join and form a dikaryotic mycelium, that mycelium may form fruiting bodies such as mushrooms. A mycelium may be minute, forming a colony that is too small to see, or may grow to span thousands of acres as in Armillaria.

The following outline is provided as an overview of and topical guide to agriculture:

<span class="mw-page-title-main">Waste management</span> Activities and actions required to manage waste from its source to its final disposal

Waste management or waste disposal includes the processes and actions required to manage waste from its inception to its final disposal. This includes the collection, transport, treatment, and disposal of waste, together with monitoring and regulation of the waste management process and waste-related laws, technologies, and economic mechanisms.

Industrial ecology (IE) is the study of material and energy flows through industrial systems. The global industrial economy can be modelled as a network of industrial processes that extract resources from the Earth and transform those resources into by-products, products and services which can be bought and sold to meet the needs of humanity. Industrial ecology seeks to quantify the material flows and document the industrial processes that make modern society function. Industrial ecologists are often concerned with the impacts that industrial activities have on the environment, with use of the planet's supply of natural resources, and with problems of waste disposal. Industrial ecology is a young but growing multidisciplinary field of research which combines aspects of engineering, economics, sociology, toxicology and the natural sciences.

Sustainable living describes a lifestyle that attempts to reduce the use of Earth's natural resources by an individual or society. Its practitioners often attempt to reduce their ecological footprint by altering their home designs and methods of transportation, energy consumption and diet. Its proponents aim to conduct their lives in ways that are consistent with sustainability, naturally balanced, and respectful of humanity's symbiotic relationship with the Earth's natural ecology. The practice and general philosophy of ecological living closely follows the overall principles of sustainable development.

Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come from the feces and remains of organisms such as plants and animals. Organic molecules can also be made by chemical reactions that do not involve life. Basic structures are created from cellulose, tannin, cutin, and lignin, along with other various proteins, lipids, and carbohydrates. Organic matter is very important in the movement of nutrients in the environment and plays a role in water retention on the surface of the planet.

<span class="mw-page-title-main">Environmental technology</span> Technical and technological processes for protection of the environment

Environmental technology (envirotech) is the use of engineering and technological approaches to understand and address issues that affect the environment with the aim of fostering environmental improvement. It involves the application of science and technology in the process of addressing environmental challenges through environmental conservation and the mitigation of human impact to the environment.

<span class="mw-page-title-main">Ministry of Environment (South Korea)</span>

The Ministry of Environment is the South Korea branch of government charged with environmental protection. In addition to enforcing regulations and sponsoring ecological research, the Ministry manages the national parks of South Korea. Its headquarters is in Sejong City.

<span class="mw-page-title-main">Green waste</span> Biodegradable waste

Green waste, also known as "biological waste", is any organic waste that can be composted. It is most usually composed of refuse from gardens such as grass clippings or leaves, and domestic or industrial kitchen wastes. Green waste does not include things such as dried leaves, pine straw, or hay. Such materials are rich in carbon and considered "brown wastes," while green wastes contain high concentrations of nitrogen. Green waste can be used to increase the efficiency of many composting operations and can be added to soil to sustain local nutrient cycling.

<span class="mw-page-title-main">Biodegradable waste</span> Organic matter that can be broken down

Biodegradable waste includes any organic matter in waste which can be broken down into carbon dioxide, water, methane, compost, humus, and simple organic molecules by micro-organisms and other living things by composting, aerobic digestion, anaerobic digestion or similar processes. It mainly includes kitchen waste, ash, soil, dung and other plant matter. In waste management, it also includes some inorganic materials which can be decomposed by bacteria. Such materials include gypsum and its products such as plasterboard and other simple sulfates which can be decomposed by sulfate reducing bacteria to yield hydrogen sulfide in anaerobic land-fill conditions.

<span class="mw-page-title-main">Biomass (energy)</span> Biological material used as a renewable energy source

In the context of energy production, biomass is matter from recently living organisms which is used for bioenergy production. Examples include wood, wood residues, energy crops, agricultural residues including straw, and organic waste from industry and households. Wood and wood residues is the largest biomass energy source today. Wood can be used as a fuel directly or processed into pellet fuel or other forms of fuels. Other plants can also be used as fuel, for instance maize, switchgrass, miscanthus and bamboo. The main waste feedstocks are wood waste, agricultural waste, municipal solid waste, and manufacturing waste. Upgrading raw biomass to higher grade fuels can be achieved by different methods, broadly classified as thermal, chemical, or biochemical.

<span class="mw-page-title-main">Waste</span> Unwanted or unusable materials

Waste are unwanted or unusable materials. Waste is any substance discarded after primary use, or is worthless, defective and of no use. A by-product, by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero.

The natural environment, commonly referred to simply as the environment, includes all living and non-living things occurring naturally on Earth.

The environmental impact of agriculture is the effect that different farming practices have on the ecosystems around them, and how those effects can be traced back to those practices. The environmental impact of agriculture varies widely based on practices employed by farmers and by the scale of practice. Farming communities that try to reduce environmental impacts through modifying their practices will adopt sustainable agriculture practices. The negative impact of agriculture is an old issue that remains a concern even as experts design innovative means to reduce destruction and enhance eco-efficiency. Animal agriculture practices tend to be more environmentally destructive than agricultural practices focused on fruits, vegetables and other biomass. The emissions of ammonia from cattle waste continue to raise concerns over environmental pollution.

<span class="mw-page-title-main">Agricultural pollution</span> Type of pollution caused by agriculture

Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.

<span class="mw-page-title-main">Health and environmental impact of the petroleum industry</span>

The environmental impact of the petroleum industry is extensive and expansive due to petroleum having many uses. Crude oil and natural gas are primary energy and raw material sources that enable numerous aspects of modern daily life and the world economy. Their supply has grown quickly over the last 150 years to meet the demands of the rapidly increasing human population, creativity, knowledge, and consumerism.

<span class="mw-page-title-main">Plastic</span> Material of a wide range of synthetic or semi-synthetic organic solids

Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be molded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to their widespread use. Plastics typically are made through human industrial systems. Most modern plastics are derived from fossil fuel-based chemicals like natural gas or petroleum; however, recent industrial methods use variants made from renewable materials, such as corn or cotton derivatives.

<span class="mw-page-title-main">Climate-friendly gardening</span> Low greenhouse gases gardening

Climate-friendly gardening is a form of gardening that can reduce emissions of greenhouse gases from gardens and encourage the absorption of carbon dioxide by soils and plants in order to aid the reduction of global warming. To be a climate-friendly gardener means considering both what happens in a garden and the materials brought into it as well as the impact they have on land use and climate. It can also include garden features or activities in the garden that help to reduce greenhouse gas emissions through processes not directly related to gardening.

<span class="mw-page-title-main">Soil regeneration</span> Creation of new soil and rejuvenation of soil health

Soil regeneration, as a particular form of ecological regeneration within the field of restoration ecology, is creating new soil and rejuvenating soil health by: minimizing the loss of topsoil, retaining more carbon than is depleted, boosting biodiversity, and maintaining proper water and nutrient cycling. This has many benefits, such as: soil sequestration of carbon in response to a growing threat of climate change, a reduced risk of soil erosion, and increased overall soil resilience.

References

  1. 1 2 ten Kate, Kerry (2018-11-01). "Business and Biodiversity Offsets Programme Glossary 2018". Forest Trends.
  2. Hamilton, C. & Denniss, R. (2005). Affluenza: when too much is never enough. Allen & Unwin, St Leonards, Sydney.
  3. eftec, IEEP et. al (2010) The use of market-based instruments for biodiversity protection – The case of habitat banking – Summary Report. http://ec.europa.eu/environment/enveco/index.htm
  4. Biodiversity Credit Alliance (2024-05-22). "Definition of a Biodiversity Credit - Issue Paper No.3" (PDF). Biodiversity Credit Alliance. Retrieved 2024-07-01.
  5. Brodin, Y-W. (ed.) 1992. "The critical load concept: an instrument to combat acidification and nutrient enrichment." Ambio 21: 332–387.
  6. Freegan web site
  7. freegan web site
  8. Levine, J. (2004). Not buying it: my year without shopping. Amazon.com
  9. on-line dictionary for genetic engineering
  10. Nye, J.S. & Donohue, J. (eds) 2000. Governance in a globalizing world. Brookings Institution, Washington.
  11. Journal of Industrial Ecology (since 1997)
  12. International Society for Industrial Ecology (since 2001)
  13. Progress in Industrial Ecology (since 2004)
  14. United Nations Framework Convention on Climate Change
  15. BBOP & UNEP (2010) Mitigation Hierarchy. Business and Biodiversity Offsets Programme & United Nations Environment Programme, Washington DC, USA, https://wayback.archive-it.org/12090/20230311043000/https://ec.europa.eu/environment/enveco/pdf/eftec_habitat_exec_sum.pdf
  16. Nature Positive Initiative (2023). "The Definition of Nature Positive" (PDF). Nature Positive Initiative. Retrieved 2024-07-01.
  17. International Finance Corporation (2012-01-01). "Performance Standard 6 - Biodiversity Conservation and Sustainable Management of Living Natural Resources" (PDF). International Finance Corporation. Retrieved 2024-07-01.
  18. Trile Bottom Line Accounting
  19. United Nations Framework Convention on Climate Change
  20. "Home". Archived from the original on 2008-03-11. Retrieved 2020-04-21.
  21. Acc. 26 Nov 2007 Archived 2008-07-05 at the Wayback Machine Hoekstra & Chapagain's Water Offset Calculator for the construction industry, the food and beverage sector and other corporations or organisations.
(multilingual environmental glossary in 28 languages: ar, bg, cs, da, de, el, en, es, et, eu, fi, fr, hu, is, it, lt, lv, mt, nl, no, pl, pt, ro, ru, sk, sl, sv, tr)