The virtual water trade is the hidden flow of water in food or other commodities that are traded from one place to another. [1] Other terms for it are embedded or embodied water. The virtual water trade is the idea that virtual water is exchanged along with goods and services. This idea provides a new, amplified perspective on water problems. It balances different perspectives, basic conditions, and interests. This concept makes it possible to distinguish between global, regional, and local levels and their linkages. However, the use of virtual water estimates may offer no guidance for policymakers seeking to ensure they are meeting environmental objectives.
For example, cereal grains have been major carriers of virtual water in countries where water resources are scarce. So cereal imports can compensate for local water deficits. [2] However, low-income countries may not be able to afford such imports in the future. This could lead to food insecurity and starvation.
The virtual water concept, also known as embodied water, was coined by John Anthony Allan (Tony Allan) in 1993. He received the Stockholm Water Prize for the concept in 2008. [3] [4]
The virtual water trade is the idea that when goods and services are exchanged, so is virtual water. When a country imports one tonne of wheat instead of producing it domestically, it is saving about 1,300 cubic meters of real indigenous water. If this country is water-scarce, the water that is 'saved' can be used towards other ends. If the exporting country is water-scarce, however, it has exported 1,300 cubic meters of virtual water since the real water used to grow the wheat will no longer be available for other purposes. This has obvious strategic implications for countries that are water-constrained such as those found in the Southern African Development Community (SADC) area. [5] [6] [7]
Water-scarce countries like Israel discourage the export of oranges (relatively water intensive crops) precisely to prevent large quantities of water from being exported to different parts of the world. [8]
In recent years, the concept of virtual water trade has gained weight both in the scientific as well as in the political debate. The notion of the concept is ambiguous. It changes between an analytical, descriptive concept and a political induced strategy. As an analytical concept, virtual water trade represents an instrument that allows the identification and assessment of policy options not only in the scientific but also in the political discourse. As a politically induced strategy, the question if virtual water trade can be implemented in a sustainable way, whether the implementation can be managed in a social, economical, and ecological fashion, and for which countries the concept offers a meaningful option.
The data that underlie the concept of virtual water can readily be used to construct water satellite accounts, and brought into economic models of international trade such as the GTAP Computable General Equilibrium Model. [9] Such a model can be used to study the economic implications of changes in the water supply or water policy, as well as the water resource implications of economic development and trade liberalization.
In sum, virtual water trade allows a new, amplified perspective on water problems: In the framework of recent developments from a supply-oriented to demand-oriented management of water resources, it opens up new fields of governance and facilitates differentiation and balancing of different perspectives, basic conditions, and interests. Analytically, the concept enables one to distinguish between global, regional, and local levels and their linkages. This means, that water resource problems have to be solved in problems [10] [11] if they cannot be successfully addressed in the local or regional watershed. Virtual water trade can thus overcome the hydro-centricity of a narrow watershed view. According to the proceedings of a 2006 conference in Frankfurt, Germany, it seems reasonable to link the new concept with the approach of integrated water resources management.
The concept of virtual water trade was introduced to refer to the idea that countries can save domestic water by importing food. Imported food, however, comes from somewhere. In 2002, Arjen Y. Hoekstra, while working for UNESCO-IHE, introduced the concept of water footprint. [12] The water footprint shows the link between consumer goods or a consumption pattern and water use and pollution. Virtual water trade and water footprint can be seen as part of a bigger story: the globalization of water.
For instance, it takes 1,340 cubic meters of water (based on the world average) to produce one tonne of wheat. The precise volume can be more or less depending on climatic conditions and agricultural practice. Hoekstra has defined the virtual-water content of a product (a commodity, good or service) as "the volume of freshwater used to produce the product, measured at the place where the product was actually produced". [13] It refers to the sum of the water use in the various steps of the production chain.
Some researchers have attempted to use the methods of energy analysis, which aim to produce embodied energy estimates, to derive virtual, or embodied water estimates. [14]
The following table shows the average virtual water content of some selected products for a number of selected countries (m3/ton): [15]
Product | USA | China | India | Russia | Indonesia | Australia | Brazil | Japan | Mexico | Italy | Netherlands | World average |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rice (paddy) | 1,275 | 1,321 | 2,850 | 2,401 | 2,150 | 1,022 | 3,082 | 1,221 | 2,182 | 1,679 | 2,291 | |
Rice (husked) | 1,656 | 1,716 | 3,702 | 3,118 | 2,793 | 1,327 | 4,003 | 1,586 | 2,834 | 2,180 | 2,975 | |
Rice (broken) | 1,903 | 1,972 | 4,254 | 3,584 | 3,209 | 1,525 | 4,600 | 1,822 | 3,257 | 2,506 | 3,419 | |
Wheat | 849 | 690 | 1,654 | 2,375 | 1,588 | 1,616 | 734 | 1,066 | 2,421 | 619 | 1,334 | |
Maize | 489 | 801 | 1,937 | 1,397 | 1,285 | 744 | 1,180 | 1,493 | 1,744 | 530 | 408 | 909 |
Soybeans | 1,869 | 2,617 | 4,124 | 3,933 | 2,030 | 2,106 | 1,076 | 2,326 | 3,177 | 1,506 | 1,789 | |
Sugar cane | 103 | 117 | 159 | 164 | 141 | 155 | 120 | 171 | 175 | |||
Cotton seed | 2,535 | 1,419 | 8,264 | 4,453 | 1,887 | 2,777 | 2,127 | 3,644 | ||||
Cotton lint | 5,733 | 3,210 | 18,694 | 10,072 | 4,268 | 6,281 | 4,812 | 8,242 | ||||
Barley | 702 | 848 | 1,966 | 2,359 | 1,425 | 1,373 | 697 | 2,120 | 1,822 | 718 | 1,388 | |
Sorghum | 782 | 863 | 4,053 | 1,212 | 582 | 2,853 | ||||||
Coconuts | 749 | 2,255 | 1,954 | 2,545 | ||||||||
Millet | 2,143 | 1,863 | 3,269 | 4,534 | 4,596 | |||||||
Coffee (green) | 4,864 | 6,290 | 12,180 | 28,119 | 17,373 | |||||||
Coffee (roasted) | 5,790 | 7,488 | 14,500 | 33,475 | 20,682 | |||||||
Tea (made) | 11,110 | 7,002 | 9,205 | |||||||||
Beef | 13,193 | 12,560 | 16,482 | 37,762 | 21,167 | 11,681 | 15,497 | |||||
Pork | 3,946 | 2,211 | 4,397 | 6,559 | 6,377 | 3,790 | 4,856 | |||||
Goat meat | 3,082 | 3,994 | 5,187 | 10,252 | 4,180 | 2,791 | 4,043 | |||||
Sheep meat | 5,977 | 5,202 | 6,692 | 16,878 | 7,572 | 5,298 | 6,143 | |||||
Chicken meat | 2,389 | 3,652 | 7,736 | 5,013 | 2,198 | 2,222 | 3,918 | |||||
Eggs | 1,510 | 3,550 | 7,531 | 4,277 | 1,389 | 1,404 | 3,340 | |||||
Milk | 695 | 1,000 | 1,369 | 1,345 | 1,143 | 915 | 1,001 | 812 | 2,382 | 861 | 641 | 990 |
Milk powder | 3,234 | 4,648 | 6,368 | 6,253 | 5,317 | 4,255 | 4,654 | 3,774 | 11,077 | 4,005 | 2,982 | 4,602 |
Cheese | 3,457 | 4,963 | 6,793 | 6,671 | 5,675 | 4,544 | 4,969 | 4,032 | 11,805 | 4,278 | 3,190 | 4,914 |
Leather (bovine) | 14,190 | 13,513 | 17,710 | 22,575 | 15,929 | 18,384 | 18,222 | 11,864 | 40,482 | 22,724 | 12,572 | 16,656 |
The virtual water or the water footprint concepts have faced some criticism. Australia's National Water Commission considers that the measurement of virtual water has little practical value in decision making regarding the best allocation of scarce water resources. [16]
Other limitations more specific to the MENA (the Middle East & North Africa) region include the fact that importing food could pose the risk of further political dependence. The notion of "self-sufficiency" has always been the pride of the MENA region. [17]
International trade is the exchange of capital, goods, and services across international borders or territories because there is a need or want of goods or services.
A carbon footprint (or greenhouse gas footprint) is a calculated value or index that makes it possible to compare the total amount of greenhouse gases that an activity, product, company or country adds to the atmosphere. Carbon footprints are usually reported in tonnes of emissions (CO2-equivalent) per unit of comparison. Such units can be for example tonnes CO2-eq per year, per kilogram of protein for consumption, per kilometer travelled, per piece of clothing and so forth. A product's carbon footprint includes the emissions for the entire life cycle. These run from the production along the supply chain to its final consumption and disposal.
Water politics, sometimes called hydropolitics, is politics affected by the availability of water and water resources, a necessity for all life forms and human development.
Anthropogenic metabolism, also referred to as metabolism of the anthroposphere, is a term used in industrial ecology, material flow analysis, and waste management to describe the material and energy turnover of human society. It emerges from the application of systems thinking to the industrial and other man-made activities and it is a central concept of sustainable development. In modern societies, the bulk of anthropogenic (man-made) material flows is related to one of the following activities: sanitation, transportation, habitation, and communication, which were "of little metabolic significance in prehistoric times". Global man-made stocks of steel in buildings, infrastructure, and vehicles, for example, amount to about 25 Gigatonnes, a figure that is surpassed only by construction materials such as concrete. Sustainable development is closely linked to the design of a sustainable anthropogenic metabolism, which will entail substantial changes in the energy and material turnover of the different human activities. Anthropogenic metabolism can be seen as synonymous to social or socioeconomic metabolism. It comprises both industrial metabolism and urban metabolism.
Water scarcity is the lack of fresh water resources to meet the standard water demand. There are two type of water scarcity. One is physical. The other is economic water scarcity. Physical water scarcity is where there is not enough water to meet all demands. This includes water needed for ecosystems to function. Regions with a desert climate often face physical water scarcity. Central Asia, West Asia, and North Africa are examples of arid areas. Economic water scarcity results from a lack of investment in infrastructure or technology to draw water from rivers, aquifers, or other water sources. It also results from weak human capacity to meet water demand. Many people in Sub-Saharan Africa are living with economic water scarcity.
This is a glossary of environmental science.
Sustainability metrics and indices are measures of sustainability, using numbers to quantify environmental, social and economic aspects of the world. There are multiple perspectives on how to measure sustainability as there is no universal standard. Intead, different disciplines and international organizations have offered measures or indicators of how to measure the concept.
Water politics in the Middle East deals with control of the water resources of the Middle East, an arid region where issues of the use, supply, control, and allocation of water are of central economic importance. Politically contested watersheds include the Tigris–Euphrates river system which drains to the south-east through Iraq into the Persian Gulf, the Nile basin which drains northward through Egypt into the eastern Mediterranean Sea, and the Jordan River basin which flows into the Dead Sea, a land-locked and highly saline sea bordered by Jordan to the east and Israel to the west.
WAFLEX is a spreadsheet-based model. It can be used to analyse upstream-downstream interactions, dam management options and water allocation and development options.
In economics, scarcity "refers to the basic fact of life that there exists only a finite amount of human and nonhuman resources which the best technical knowledge is capable of using to produce only limited maximum amounts of each economic good." If the conditions of scarcity did not exist and an "infinite amount of every good could be produced or human wants fully satisfied ... there would be no economic goods, i.e. goods that are relatively scarce..." Scarcity is the limited availability of a commodity, which may be in demand in the market or by the commons. Scarcity also includes an individual's lack of resources to buy commodities. The opposite of scarcity is abundance. Scarcity plays a key role in economic theory, and it is essential for a "proper definition of economics itself".
"The best example is perhaps Walras' definition of social wealth, i.e., economic goods. 'By social wealth', says Walras, 'I mean all things, material or immaterial, that are scarce, that is to say, on the one hand, useful to us and, on the other hand, only available to us in limited quantity'."
A water footprint shows the extent of water use in relation to consumption by people. The water footprint of an individual, community, or business is defined as the total volume of fresh water used to produce the goods and services consumed by the individual or community or produced by the business. Water use is measured in water volume consumed (evaporated) and/or polluted per unit of time. A water footprint can be calculated for any well-defined group of consumers or producers, for a single process or for any product or service.
The Netherlands fallacy refers to an error Paul R. Ehrlich and his co-authors claim others make in assuming that the environmental impacts of the Netherlands and other rich nations are contained within their national borders.
John Anthony Allan, sometime cited as Tony Allan, was a British geographer. He was awarded the Stockholm Water Prize in 2008 for his revolutionary virtual water concept. Although being an emeritus of the School of Oriental and African Studies and King's College London of the University of London, he still acted as a teaching Professor at King's College London.
The biocapacity or biological capacity of an ecosystem is an estimate of its production of certain biological materials such as natural resources, and its absorption and filtering of other materials such as carbon dioxide from the atmosphere.
Water resource policy, sometimes called water resource management or water management, encompasses the policy-making processes and legislation that affect the collection, preparation, use, disposal, and protection of water resources. The long-term viability of water supply systems poses a significant challenge as a result of water resource depletion, climate change, and population expansion.
Land footprint is the real amount of land, wherever it is in the world, that is needed to produce a product, or used by an organisation or by a nation.
Arjen Hoekstra was a professor at the University of Twente who pioneered the concept of the water footprint - a way of measuring the extent of water consumption. His work drew attention to the hidden water use associated with a range of activities, and continues to have a profound effect both on scholarship and on environmental policy and activism. He strongly supported open source science, and all his articles were published under a Creative Commons License.
A foodprint refers to the environmental pressures created by the food demands of individuals, organizations, and geopolitical entities. Like other forms of ecological footprinting, a foodprint can include multiple parameters to quantify the overall environmental impact of food, including carbon footprinting, water footprinting, and foodshed mapping. Some foodprinting efforts also attempt to capture the social and ethical costs of food production by accounting for dimensions such as farm worker justice or prices received by farmers for goods as a share of food dollars. Environmental advocacy organizations like the Earth Day Network and the Natural Resources Defense Council have publicized the foodprint concept as a way of engaging consumers on the environmental impacts of dietary choices.
Ecologically or ecological unequal exchange is a concept from ecological economics that builds from the notion of unequal exchange. It considers the inequities hidden in the monetary value of trade flows not only in terms of wages, and quantities of labor but also regarding materials, energy and environmental degradation. As labor is also a form of energy, unequal exchange of embodied labor can even be considered a subset of the wider phenomenon of ecologically unequal exchange. There is an uneven utilization of the environment at the global level not only due to the uneven distribution of resources, but also to shift the environmental burden. The consumption and capital accumulation of core countries are based on environmental degradation and extraction in periphery countries. Sustainability analysis and solutions with a production-based perspective in core countries may thus keep increase unsustainability at the global level. The current configuration of global production networks that leads to this asymmetric trade patterns has evolved historically with colonialism. Whereas ecological unequal exchange is a concept developed in academia, the concept of ecological debt is used in an activism context of environmental justice. The latter defines the accumulation of this unequal exchange through history.
Water positive is the concept of water conservation by a company, community, or individual that actively contributes to the sustainable management and restoration of water resources. This involves implementing practices and technologies that reduce water consumption, improve water quality, and enhance water availability. The goal of being water positive is to leave a positive impact on water ecosystems and ensure that more water is conserved and restored than is used or depleted.
In 2002, Arjen Hoekstra, whilst working at the UNESCO-IHE Institute for Water Education, created the water footprint as a metric to measure the amount of water consumed and polluted to produce goods and services along their full supply chain.