Inductively coupled plasma atomic emission spectroscopy

Last updated
ICP atomic emission spectrometer. Spectrometer ICP-OES.jpg
ICP atomic emission spectrometer.

Inductively coupled plasma atomic emission spectroscopy (ICP-AES), also referred to as inductively coupled plasma optical emission spectroscopy (ICP-OES), is an analytical technique used for the detection of chemical elements. It is a type of emission spectroscopy that uses the inductively coupled plasma to produce excited atoms and ions that emit electromagnetic radiation at wavelengths characteristic of a particular element. [1] The plasma is a high temperature source of ionised source gas (often argon). The plasma is sustained and maintained by inductive coupling from electrical coils at megahertz frequencies. The source temperature is in the range from 6000 to 10,000 K. The intensity of the emissions from various wavelengths of light are proportional to the concentrations of the elements within the sample.

Contents

Mechanism

ICP Plasma "torch". ICP-AES Plasma Torch - 001.jpg
ICP Plasma "torch".

The ICP-AES is composed of two parts: the ICP and the optical spectrometer. The ICP torch consists of 3 concentric quartz glass tubes. [2] The output or "work" coil of the radio frequency (RF) generator surrounds part of this quartz torch. Argon gas is typically used to create the plasma.

The ICPs have two operation modes, called capacitive (E) mode with low plasma density and inductive (H) mode with high plasma density, and E to H heating mode transition occurs with external inputs. [3] The torch is operated in the H mode.

When the torch is turned on, an intense electromagnetic field is created within the coil by the high power radio frequency signal flowing in the coil. This RF signal is created by the RF generator which is, effectively, a high power radio transmitter driving the "work coil" the same way a typical radio transmitter drives a transmitting antenna. Typical instruments run at either 27 or 40 MHz. [4] The argon gas flowing through the torch is ignited with a Tesla unit that creates a brief discharge arc through the argon flow to initiate the ionization process. Once the plasma is "ignited", the Tesla unit is turned off.

The argon gas is ionized in the intense electromagnetic field and flows in a particular rotationally symmetrical pattern towards the magnetic field of the RF coil. A stable, high temperature plasma of about 7000 K is then generated as the result of the inelastic collisions created between the neutral argon atoms and the charged particles. [5]

A peristaltic pump delivers an aqueous or organic sample into an analytical nebulizer where it is changed into mist and introduced directly inside the plasma flame. The sample immediately collides with the electrons and charged ions in the plasma and is itself broken down into charged ions. The various molecules break up into their respective atoms which then lose electrons and recombine repeatedly in the plasma, giving off radiation at the characteristic wavelengths of the elements involved.

In some designs, a shear gas, typically nitrogen or dry compressed air is used to 'cut' the plasma at a specific spot. One or two transfer lenses are then used to focus the emitted light on a diffraction grating where it is separated into its component wavelengths in the optical spectrometer. In other designs, the plasma impinges directly upon an optical interface which consists of an orifice from which a constant flow of argon emerges, deflecting the plasma and providing cooling while allowing the emitted light from the plasma to enter the optical chamber. Still other designs use optical fibers to convey some of the light to separate optical chambers.

Within the optical chamber(s), after the light is separated into its different wavelengths (colours), the light intensity is measured with a photomultiplier tube or tubes physically positioned to "view" the specific wavelength(s) for each element line involved, or, in more modern units, the separated colors fall upon an array of semiconductor photodetectors such as charge coupled devices (CCDs). In units using these detector arrays, the intensities of all wavelengths (within the system's range) can be measured simultaneously, allowing the instrument to analyze for every element to which the unit is sensitive all at once. Thus, samples can be analyzed very quickly.

The intensity of each line is then compared to previously measured intensities of known concentrations of the elements, and their concentrations are then computed by interpolation along the calibration lines (use of a calibration curve).

In addition, special software generally corrects for interferences caused by the presence of different elements within a given sample matrix.

History

The first published attempt to use plasma emissions as a source for spectroscopic analysis were in 1956 by Eugen Bădărău. [6] In 1964 Stanley Greenfield working at Albright & Wilson was the first to use ICP for non experimental analysis. [6] The first commercial machine was produced by KONTRON in 1975. [6]

Applications

Examples of the application of ICP-AES include the determination of metals in wine, [7] arsenic in food, [8] and trace elements bound to proteins. [9] ICP-AES methods are used to test for metals contamination in drinking water and wastewater. [10]

ICP-AES is widely used in minerals processing to provide the data on grades of various streams, for the construction of mass balances.

In 2008, the technique was used at Liverpool University to demonstrate that a Chi Rho amulet found in Shepton Mallet and previously believed to be among the earliest evidence of Christianity in England, [11] only dated to the nineteenth century. [12] [13] [14]

ICP-AES is often used for analysis of trace elements in soil, and it is for that reason it is often used in forensics to ascertain the origin of soil samples found at crime scenes or on victims etc. Taking one sample from a control and determining the metal composition and taking the sample obtained from evidence and determine that metal composition allows a comparison to be made. While soil evidence may not stand alone in court it certainly strengthens other evidence.

It is also fast becoming the analytical method of choice for the determination of nutrient levels in agricultural soils. This information is then used to calculate the amount of fertiliser required to maximise crop yield and quality.

ICP-AES is used for motor oil analysis. Analyzing used motor oil reveals a great deal about how the engine is operating. Parts that wear in the engine will deposit traces in the oil which can be detected with ICP-AES. ICP-AES analysis can help to determine whether parts are failing. In addition, ICP-AES can determine what amount of certain oil additives remain and therefore indicate how much service life the oil has remaining. Oil analysis is often used by fleet manager or automotive enthusiasts who have an interest in finding out as much about their engine's operation as possible. ICP-AES is also used during the production of motor oils (and other lubricating oils) for quality control and compliance with production and industry specifications.

See also

Related Research Articles

<span class="mw-page-title-main">Atomic absorption spectroscopy</span> Type of spectroanalytical ciao

Atomic absorption spectroscopy (AAS) and atomic emission spectroscopy (AES) is a spectroanalytical procedure for the quantitative determination of chemical elements by free atoms in the gaseous state. Atomic absorption spectroscopy is based on absorption of light by free metallic ions.

<span class="mw-page-title-main">Inductively coupled plasma mass spectrometry</span> Type of mass spectrometry that uses an inductively coupled plasma to ionize the sample

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry that uses an inductively coupled plasma to ionize the sample. It atomizes the sample and creates atomic and small polyatomic ions, which are then detected. It is known and used for its ability to detect metals and several non-metals in liquid samples at very low concentrations. It can detect different isotopes of the same element, which makes it a versatile tool in isotopic labeling.

In physics, atomic spectroscopy is the study of the electromagnetic radiation absorbed and emitted by atoms. Since unique elements have unique emission spectra, atomic spectroscopy is applied for determination of elemental compositions. It can be divided by atomization source or by the type of spectroscopy used. In the latter case, the main division is between optical and mass spectrometry. Mass spectrometry generally gives significantly better analytical performance, but is also significantly more complex. This complexity translates into higher purchase costs, higher operational costs, more operator training, and a greater number of components that can potentially fail. Because optical spectroscopy is often less expensive and has performance adequate for many tasks, it is far more common. Atomic absorption spectrometers are one of the most commonly sold and used analytical devices.

Gold fingerprinting is a method of identifying an item made of gold based on the impurities or trace elements it contains.

<span class="mw-page-title-main">Inductively coupled plasma</span> Type of plasma source

An inductively coupled plasma (ICP) or transformer coupled plasma (TCP) is a type of plasma source in which the energy is supplied by electric currents which are produced by electromagnetic induction, that is, by time-varying magnetic fields.

<span class="mw-page-title-main">Glow discharge</span>

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

<span class="mw-page-title-main">Elemental analysis</span> Process of analytical chemistry

Elemental analysis is a process where a sample of some material is analyzed for its elemental and sometimes isotopic composition. Elemental analysis can be qualitative, and it can be quantitative. Elemental analysis falls within the ambit of analytical chemistry, the instruments involved in deciphering the chemical nature of our world.

<span class="mw-page-title-main">Laser ablation</span> Process that removes material from an object by heating it with a laser

Laser ablation or photoablation is the process of removing material from a solid surface by irradiating it with a laser beam. At low laser flux, the material is heated by the absorbed laser energy and evaporates or sublimates. At high laser flux, the material is typically converted to a plasma. Usually, laser ablation refers to removing material with a pulsed laser, but it is possible to ablate material with a continuous wave laser beam if the laser intensity is high enough. While relatively long laser pulses can heat and thermally alter or damage the processed material, ultrashort laser pulses cause only minimal material damage during processing due to the ultrashort light-matter interaction and are therefore also suitable for micromaterial processing. Excimer lasers of deep ultra-violet light are mainly used in photoablation; the wavelength of laser used in photoablation is approximately 200 nm.

Graphite furnace atomic absorption spectroscopy (GFAAS) is a type of spectrometry that uses a graphite-coated furnace to vaporize the sample. Briefly, the technique is based on the fact that free atoms will absorb light at frequencies or wavelengths characteristic of the element of interest. Within certain limits, the amount of light absorbed can be linearly correlated to the concentration of analyte present. Free atoms of most elements can be produced from samples by the application of high temperatures. In GFAAS, samples are deposited in a small graphite or pyrolytic carbon coated graphite tube, which can then be heated to vaporize and atomize the analyte. The atoms absorb ultraviolet or visible light and make transitions to higher electronic energy levels. Applying the Beer-Lambert law directly in AA spectroscopy is difficult due to variations in the atomization efficiency from the sample matrix, and nonuniformity of concentration and path length of analyte atoms. Concentration measurements are usually determined from a working curve after calibrating the instrument with standards of known concentration. The main advantages of the graphite furnace comparing to aspiration atomic absorption are the following:

In a chemical analysis, the internal standard method involves adding the same amount of a chemical substance to each sample and calibration solution. The internal standard responds proportionally to changes in the analyte and provides a similar, but not identical, measurement signal. It must also be absent from the sample matrix to ensure there is no other source of the internal standard present. Taking the ratio of analyte signal to internal standard signal and plotting it against the analyte concentrations in the calibration solutions will result in a calibration curve. The calibration curve can then be used to calculate the analyte concentration in an unknown sample.

<span class="mw-page-title-main">Cold vapour atomic fluorescence spectroscopy</span>

Cold vapour atomic fluorescence spectroscopy (CVAFS) is a subset of the analytical technique known as atomic fluorescence spectroscopy (AFS).

Velmer A. Fassel was an American chemist who developed the inductively coupled plasma (ICP) and demonstrated its use as ion source for mass spectrometry.

<span class="mw-page-title-main">Atomic emission spectroscopy</span> Analytical method using radiation to identify chemical elements in a sample

Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample. The wavelength of the atomic spectral line in the emission spectrum gives the identity of the element while the intensity of the emitted light is proportional to the number of atoms of the element. The sample may be excited by various methods.

SPECTRO Analytical Instruments is a manufacturer of elemental analyzers using optical emission spectroscopy and x-ray fluorescence spectrometry. The company's headquarters are located in Kleve, Germany.

<span class="mw-page-title-main">CyTOF</span>

Cytometry by time of flight, or CyTOF, is an application of mass cytometry used to quantify labeled targets on the surface and interior of single cells. CyTOF allows the quantification of multiple cellular components simultaneously using an ICP-MS detector.

<span class="mw-page-title-main">Direct-current plasma</span>

Direct-current plasma (DCP) is a type of plasma source used for atomic emission spectroscopy that utilizes three electrodes to produce a plasma stream. The most common three-electrode DCP apparatus consists of two graphite anode blocks and a tungsten cathode block arranged in an inverted-Y arrangement. An argon gas source is situated between the anode blocks and argon gas flows through the anode blocks. The plasma stream is produced by briefly contacting the cathode with the anodes. Temperatures at the arc core exceed 8000 K. This three-electrode arrangement is illustrated in Figure 1.

<span class="mw-page-title-main">Glow-discharge optical emission spectroscopy</span>

Glow-discharge optical emission spectroscopy (GDOES) is a spectroscopic method for the quantitative analysis of metals and other non-metallic solids. The idea was published and patented in 1968 by Werner Grimm from Hanau, Germany.

<span class="mw-page-title-main">Scott D. Tanner</span> Canadian scientist

Scott Tanner is a Canadian scientist, inventor, and entrepreneur. His areas of expertise include mass spectroscopy, especially inductively coupled plasma mass spectrometry (ICP-MS), and mass cytometry.

References

  1. Thompson, Michael; Walsh, J. Nicholas (1989). "Handbook of Inductively Coupled Plasma Spectrometry". SpringerLink. doi:10.1007/978-1-4613-0697-9.
  2. Hieftje, Gary; et al. (1982). "Design and Construction of a Low-Flow, Low-Power Torch for Inductively Coupled Plasma Spectrometry". Applied Spectroscopy. 36 (6): 627–631. Bibcode:1982ApSpe..36..627R. doi:10.1366/0003702824639105. S2CID   97527015 . Retrieved 5 April 2015.
  3. Hyo-Chang Lee (2018) Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics 5 011108 https://doi.org/10.1063/1.5012001
  4. Hieftje, Gary; et al. (2006). "Effect of the plasma operating frequency on the figures of merit of an inductively coupled plasma time-of-flight mass spectrometer". Journal of Analytical Atomic Spectrometry. 21 (2): 160–167. doi:10.1039/B515719F . Retrieved 5 April 2015.
  5. Haung, Mao; Hieftje, Gary (1989). "Simultaneous measurement of spatially resolved electron temperatures, electron number densities and gas temperatures by laser light scattering from the ICP". Spectrochimica Acta Part B: Atomic Spectroscopy. 44 (8): 739–749. Bibcode:1989AcSpe..44..739H. doi:10.1016/0584-8547(89)80072-2. Archived from the original on September 24, 2017.
  6. 1 2 3 Ohls, Knut; Bogdain, Bernhard (2016). "History of inductively coupled plasma atomic emission spectral analysis: From the beginning up to its coupling with mass spectrometry". Journal of Analytical Atomic Spectrometry. 31: 22–31. doi:10.1039/C5JA90043C.
  7. Aceto M, Abollino O, Bruzzoniti MC, Mentasti E, Sarzanini C, Malandrino M (2002). "Determination of metals in wine with atomic spectroscopy (flame-AAS, GF-AAS and ICP-AES); a review". Food Additives and Contaminants. 19 (2): 126–33. doi:10.1080/02652030110071336. PMID   11820494. S2CID   28850410.
  8. Benramdane L, Bressolle F, Vallon JJ (1999). "Arsenic speciation in humans and food products: a review". Journal of Chromatographic Science. 37 (9): 330–44. doi: 10.1093/chromsci/37.9.330 . PMID   10497786.
  9. Ma R, McLeod CW, Tomlinson K, Poole RK (2004). "Speciation of protein-bound trace elements by gel electrophoresis and atomic spectrometry". Electrophoresis. 25 (15): 2469–77. doi:10.1002/elps.200405999. PMID   15300764. S2CID   11012108.
  10. "Approved Clean Water Act Chemical Test Methods". Washington, D.C.: U.S. Environmental Protection Agency. 2022-12-28. Method Nos. 200.5, 200.7.
  11. Leach, Peter (1991). Shepton Mallet: Romano-Britons and Early Christians in Somerset. Birmingham: Birmingham University Field Archeology Unit. ISBN   978-0-7044-1129-6.
  12. Savill, Richard (2008-09-18). "'Ancient' Christian amulet declared a fake". Daily Telegraph. London. Archived from the original on 2008-09-19. Retrieved 2008-09-18.
  13. "New tests challenge age of amulet". BBC News. BBC. 2008-09-18. Retrieved 2008-09-18.
  14. de Bruxelles, Simon (2008-09-16). "Romano-British silver Christian cross may be fake". Times Online. London: The Times. Retrieved 2008-09-18.