Peristaltic pump

Last updated
Peristaltic tube pump with two sprung rollers Peristaltic pump head.jpg
Peristaltic tube pump with two sprung rollers
Peristaltic pump in motion Peristaltic pump.gif
Peristaltic pump in motion

A peristaltic pump, also commonly known as a roller pump, is a type of positive displacement pump used for pumping a variety of fluids. The fluid is contained in a flexible tube fitted inside a circular pump casing. Most peristaltic pumps work through rotary motion, though linear peristaltic pumps have also been made. The rotor has a number of "wipers" or "rollers" attached to its external circumference, which compress the flexible tube as they rotate by. The part of the tube under compression is closed, forcing the fluid to move through the tube. Additionally, as the tube opens to its natural state after the rollers pass, more fluid is drawn into the tube. This process is called peristalsis and is used in many biological systems such as the gastrointestinal tract. Typically, there will be two or more rollers compressing the tube, trapping a body of fluid between them. The body of fluid is transported through the tube, toward the pump outlet. Peristaltic pumps may run continuously, or they may be indexed through partial revolutions to deliver smaller amounts of fluid.

Contents

History

Linear peristaltic pump Schlauchpumpe-lineare-Verdraengung.png
Linear peristaltic pump

A form of peristaltic pump was described in The Mechanics Magazine in 1845. The pump used a leather hose which did not need to self-open when released by the rollers, instead relying on the incoming water having sufficient pressure to fill the open inlet end on each cycle. [1] The peristaltic pump was first patented in the United States by Rufus Porter and J. D. Bradley in 1855 (U.S. Patent number 12753) [2] as a well pump, and later by Eugene Allen in 1881 (U.S. Patent number 249285) [3] for blood transfusions. It was developed by heart surgeon Dr. Michael DeBakey [4] for blood transfusions [5] while he was a medical student in 1932 and later used by him for cardiopulmonary bypass [6] systems. A specialized nonocclusive roller pump (US Patent 5222880) [7] using soft flat tubing was developed in 1992 for cardiopulmonary bypass systems.

Applications

Peristaltic pumps are typically used to pump clean/sterile or highly reactive fluids without exposing those fluids to contamination from exposed pump components. Some common applications include pumping IV fluids through an infusion device, apheresis, highly reactive chemicals, high-solids slurries, and other materials where isolation of the product from the environment are critical. They are also used in heart–lung machines to circulate blood during bypass surgery, and in hemodialysis systems, since the pump does not cause significant hemolysis, or rupture of the blood cells.[ citation needed ]

Key design parameters

The ideal peristaltic pump should have an infinite diameter of the pump head and the largest possible diameter of the rollers. Such an ideal peristaltic pump would offer the longest possible tubing lifetime and provide a constant and pulsation-free flow rate.

Such an ideal peristaltic pump cannot be constructed in reality. However, peristaltic pumps can be designed to approach these ideal peristaltic pump parameters.

Careful design can offer constant accurate flow rates for several weeks together with a long tubing lifetime without the risk of tubing rupture.[ citation needed ]

Chemical compatibility

The pumped fluid contacts only the inside surface of the tubing. This eliminates fluid compatibility concerns with other pump components such as valves, O-rings, and seals, which must be considered for other pump designs. Therefore, only the composition of the tubing that the pumped medium travels through is considered for chemical compatibility.[ citation needed ]

The tubing needs to be elastomeric to maintain the circular cross-section after millions of cycles of squeezing in the pump. This requirement eliminates a variety of non-elastomeric polymers that have compatibility with a wide range of chemicals, such as PTFE, polyolefins, PVDF, etc. from consideration as material for pump tubing. The popular elastomers for pump tubing are nitrile (NBR), Hypalon, Viton, silicone, PVC, EPDM, EPDM+polypropylene (as in Santoprene), polyurethane and natural rubber. Of these materials, natural rubber has the best fatigue resistance, and EPDM and Hypalon have the best chemical compatibility. Silicone is popular with water-based fluids, such as in bio-pharma industry, but has a limited range of chemical compatibility in other industries.[ citation needed ]

Extruded fluoropolymer tubes such as FKM (Viton, Fluorel, etc.) have good compatibility with acids, hydrocarbons, and petroleum fuels, but have insufficient fatigue resistance to achieve an effective tube life.

There are a couple of newer tubing developments that offer broad chemical compatibility using lined tubing and fluoroelastomers.[ citation needed ]

With lined tubing, the thin inside liner is made of a chemically resistant material such as poly-olefin and PTFE that form a barrier for the rest of the tubing wall from coming in contact with the pumped fluid. These liners are materials that are often not elastomeric, therefore the entire tube wall cannot be made with this material for peristaltic pump applications. This tubing provides adequate chemical compatibility and life to be used in chemically challenging applications. There are a few things to keep in mind when using these tubes - any pinholes in the liner during manufacturing could render the tubing vulnerable to chemical attack. In the case of stiff plastic liners like the polyolefins, with repeated flexing in the peristaltic pump they can develop cracks, rendering the bulk material again vulnerable to chemical attack. A common issue with all lined tubing is the delamination of the liner with repeated flexing that signals the end of the tube's life. For those with the need for chemically compatible tubing, these lined tubings offer a good solution.[ citation needed ]

With fluoroelastomer tubing, the elastomer itself has the chemical resistance. In the case of e.g. Chem-Sure, it is made of a perfluoroelastomer, that has the broadest chemical compatibility of all elastomers. The two fluoroelastomer tubes listed above combine the chemical compatibility with a very long tube life stemming from their reinforcement technology but come at a pretty high initial cost. One has to justify the cost with the total value derived over the long tube life and compare with other options such as other tubing or even other pump technologies.

There are many online sites for checking the chemical compatibility of the tubing material with the pumped fluid. The tubing manufacturers may also have compatibility charts specific to their tubing production method, coating, material, and the fluid being pumped.

While these charts cover a list of commonly encountered fluids, they may not have all the fluids. If there is a fluid whose compatibility is not listed anywhere, then a common test of compatibility is the immersion testing. A 1 to 2 inch sample of the tubing is immersed in the fluid to be pumped for anywhere from 24 to 48 hours, and the amount of weight change from before and after the immersion is measured. If the weight change is greater than 10% of the initial weight, then that tube is not compatible with the fluid, and should not be used in that application. This test is still a one-way test, in the sense that there is still a remote chance that the tubing that passes this test can still be incompatible for the application since the combination of borderline compatibility and mechanical flexing can push the tube over the edge, resulting in premature tube failure.

In general, recent tubing developments have brought broad chemical compatibility to the peristaltic pump option that many chemical dosing applications can benefit over other current pump technologies.

Occlusion

The minimum gap between the roller and the housing determines the maximum squeeze applied on the tubing. The amount of squeeze applied to the tubing affects pumping performance and the tube life  more squeezing decreases the tubing life dramatically, while less squeezing can cause the pumped medium to slip back, especially in high-pressure pumping, and decreases the efficiency of the pump dramatically, and the high velocity of the slip-back typically causes premature failure of the hose. Therefore, this amount of squeeze becomes an important design parameter.

The term "occlusion" is used to measure the amount of squeeze. It is either expressed as a percentage of twice the wall thickness, or as an absolute amount of the wall that is squeezed.

Let

g = minimum gap between the roller and the housing,
t = wall thickness of the tubing.

Then

y = 2tg, when expressed as the absolute amount of squeeze,
y = 100% × (2tg) / (2t), when expressed as a percentage of twice the wall thickness.

The occlusion is typically 10% to 20%, with a higher occlusion for a softer tube material, and a lower occlusion for a harder tube material.

Thus for a given pump, the most critical tubing dimension becomes the wall thickness. An interesting point here is that the inside diameter (ID) of the tubing is not an important design parameter for the suitability of the tubing for the pump. Therefore, it is common for more than one ID be used with a pump, as long as the wall thickness remains the same.

Inside diameter

For a given rotational speed of the pump, a tube with a larger inside diameter (ID) will give a higher flow rate than one with a smaller inside diameter. The flow rate is a function of the cross-section area of the tube bore.

Flow rate

The flow rate is an important parameter for a pump. The flow rate in a peristaltic pump is determined by many factors, such as:

  1. Tube inner diameter  higher flow rate with larger inner diameter.
  2. Pump-head outer diameter  higher flow rate with larger outer diameter.
  3. Pump-head rotational speed  higher flow rate with higher speed.
  4. Inlet pulsation  the pulse reduces the filling volume of the hose.

Increasing the number of rollers does not increase the flow rate, instead it will decrease the flow rate somewhat by reducing the effective (i.e. fluid-pumping) circumference of the head. Adding rollers does tend to decrease the amplitude of the fluid pulsing at the outlet by increasing the frequency of the pulsed flow.

The length of the tube (measured from the initial pinch point near the inlet to the final release point near the outlet) does not affect the flow rate. However, a longer tube implies more pinch points between inlet and outlet, increasing the pressure that the pump can generate.

The flow rate of a peristaltic pump is in most cases not linear. The effect of pulsation at the inlet of the pump changes the filling degree of the peristaltic hose. With high inlet pulsation, the peristaltic hose may become oval-shaped, resulting in less flow. Accurate metering with a peristaltic pump is therefore only possible when the pump has a constant flow rate, or when inlet pulsation is eliminated with the use of correctly designed pulsation dampeners.

Pulsation

Pulsation is an important side effect of the peristaltic pump. The pulsation in a peristaltic pump is determined by many factors, such as:

  1. Flow rate  higher flow rate gives more pulsation.
  2. Line length  Long pipelines give more pulsation.
  3. Higher pump speed  higher rotational frequency gives more pulsation.
  4. Specific gravity of the fluid  higher fluid density gives more pulsation.

Variations

Hose pumps

Higher pressure peristaltic hose pumps which can typically operate against up to 16 bar (230 psi) in continuous service, use shoes (rollers only used on low-pressure types) and have casings filled with lubricant to prevent abrasion of the exterior of the pump tube and to aid in the dissipation of heat, and use reinforced tubes, often called "hoses". This class of pump is often called a "hose pump".

The biggest advantage with the hose pumps over the roller pumps is the high operating pressure of up to 16 bar. With rollers, max pressure can arrive up to 12 bar (170 psi) without any problem. If the high operating pressure is not required, a tubing pump is a better option than a hose pump if the pumped medium is not abrasive. With recent advances made in the tubing technology for pressure, life, and chemical compatibility, as well as the higher flow rate ranges, the advantages that hose pumps had over roller pumps continues to erode.

Tube pumps

Lower pressure peristaltic pumps typically have dry casings and use rollers along with non-reinforced, extruded tubing. This class of pump is sometimes called a "tube pump" or "tubing pump". These pumps employ rollers to squeeze the tube. Except for a 360° eccentric pump design, these pumps have a minimum of 2 rollers 180° apart and may have as many as 8, or even 12 rollers. Increasing the number of rollers increases the pressure pulse frequency of the pumped fluid at the outlet, thereby decreasing the amplitude of pulsing. The downside to increasing the number of rollers it that it proportionately increases the number of squeezes, or occlusions, on the tubing for a given cumulative flow through that tube, thereby reducing the tubing life.

There are two kinds of roller design in peristaltic pumps:

The operating pressure of these pumps is determined by the tubing and by the motor's ability to overcome the hoop strength of the tubing and the fluid pressure.

Microfluidic pumps

The pumping sequence used in a pneumatically-actuated microfluidic peristaltic pump. Peristaltic pump.png
The pumping sequence used in a pneumatically-actuated microfluidic peristaltic pump.

In microfluidics, it is often desirable to minimize the circulating volume of fluid. Traditional pumps require a large volume of liquid external to the microfluidic circuit. This can lead to problems due to dilution of analytes and already dilute biological signalling molecules. [9] For this reason, among others, it is desirable to integrate a micro-pumping structure into the microfluidic circuit. Wu et al. presented in 2008 a pneumatically actuated peristaltic micropump which eliminates the need for large external circulating fluid volumes. [8]

Advantages

Disadvantages

Tubing

Considerations for selecting peristaltic pump tubing include appropriate chemical resistance towards the liquid being pumped, whether the pump will be used continuously or intermittently, and cost. Types of tubing commonly used in peristaltic pumps include:

For continuous use, most of the materials perform similarly over short time frames. [10] This suggests that overlooked low cost materials such as PVC might meet the needs of a short-term, one time use medical applications. For intermittent use, compression set is important and Silicone is an optimal material choice.

Typical applications

Peristaltic pump used in chemical treatment process of a water purification plant Watson-Marlow Peristaltic Pump.JPG
Peristaltic pump used in chemical treatment process of a water purification plant

See also

Related Research Articles

<span class="mw-page-title-main">Pump</span> Device that imparts energy to the fluids by mechanical action

A pump is a device that moves fluids, or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic energy.

<span class="mw-page-title-main">Heat exchanger</span> Equipment used to transfer heat between fluids

A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.

<span class="mw-page-title-main">Progressing cavity pump</span>

A progressing cavity pump is a type of positive displacement pump and is also known as a progressive cavity pump, progg cavity pump, eccentric screw pump or cavity pump. It transfers fluid by means of the progress, through the pump, of a sequence of small, fixed shape, discrete cavities, as its rotor is turned. This leads to the volumetric flow rate being proportional to the rotation rate (bidirectionally) and to low levels of shearing being applied to the pumped fluid.

<span class="mw-page-title-main">Chemical reactor</span> Enclosed volume where interconversion of compounds takes place

A chemical reactor is an enclosed volume in which a chemical reaction takes place. In chemical engineering, it is generally understood to be a process vessel used to carry out a chemical reaction, which is one of the classic unit operations in chemical process analysis. The design of a chemical reactor deals with multiple aspects of chemical engineering. Chemical engineers design reactors to maximize net present value for the given reaction. Designers ensure that the reaction proceeds with the highest efficiency towards the desired output product, producing the highest yield of product while requiring the least amount of money to purchase and operate. Normal operating expenses include energy input, energy removal, raw material costs, labor, etc. Energy changes can come in the form of heating or cooling, pumping to increase pressure, frictional pressure loss or agitation.

<span class="mw-page-title-main">Injector</span> Type of pump using high pressure fluid to entrain a lower pressure fluid

An injector is a system of ducting and nozzles used to direct the flow of a high-pressure fluid in such a way that a lower pressure fluid is entrained in the jet and carried through a duct to a region of higher pressure. It is a fluid-dynamic pump with no moving parts except a valve to control inlet flow.

<span class="mw-page-title-main">Hydraulic machinery</span> Type of machine that uses liquid fluid power to perform work

Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine and becomes pressurized according to the resistance present. The fluid is controlled directly or automatically by control valves and distributed through hoses, tubes, or pipes.

Glass tubes are mainly cylindrical hollow-wares. Their special shape combined with the huge variety of glass types, allows the use of glass tubing in many applications. For example, laboratory glassware, lighting applications, solar thermal systems and pharmaceutical packaging to name the largest.

<span class="mw-page-title-main">Infusion pump</span> Medical device

An infusion pump infuses fluids, medication or nutrients into a patient's circulatory system. It is generally used intravenously, although subcutaneous, arterial and epidural infusions are occasionally used.

Hydropneumatic devices are systems that operate using water and gas. The devices are used in various applications.

<span class="mw-page-title-main">Surface condenser</span> Steam engine component

A surface condenser is a water-cooled shell and tube heat exchanger installed to condense exhaust steam from a steam turbine in thermal power stations. These condensers are heat exchangers which convert steam from its gaseous to its liquid state at a pressure below atmospheric pressure. Where cooling water is in short supply, an air-cooled condenser is often used. An air-cooled condenser is however, significantly more expensive and cannot achieve as low a steam turbine exhaust pressure as a water-cooled surface condenser.

<span class="mw-page-title-main">Pipe (fluid conveyance)</span> Tubular section or hollow cylinder

A pipe is a tubular section or hollow cylinder, usually but not necessarily of circular cross-section, used mainly to convey substances which can flow — liquids and gases (fluids), slurries, powders and masses of small solids. It can also be used for structural applications; hollow pipe is far stiffer per unit weight than solid members.

A metering pump moves a precise volume of liquid in a specified time period providing an accurate volumetric flow rate. Delivery of fluids in precise adjustable flow rates is sometimes called metering. The term "metering pump" is based on the application or use rather than the exact kind of pump used, although a couple types of pumps are far more suitable than most other types of pumps.

<span class="mw-page-title-main">Completion (oil and gas wells)</span> Last operation for oil and gas wells

Well completion is the process of making a well ready for production after drilling operations. This principally involves preparing the bottom of the hole to the required specifications, running in the production tubing and its associated down hole tools as well as perforating and stimulating as required. Sometimes, the process of running in and cementing the casing is also included. After a well has been drilled, should the drilling fluids be removed, the well would eventually close in upon itself. Casing ensures that this will not happen while also protecting the wellstream from outside incumbents, like water or sand.

Plaster spraying allows a plasterer to skim a drywall more than five times faster than using a hand float to apply it. Although classic gypsum-based plaster can be sprayed if it is "spray grade," most plaster sprayers prefer the organic-based pre-mixed plaster packaged in a plastic bag because the plaster spraying machine does not need to be cleaned out after the job is finished, providing that plaster is kept moist. The pre-mixed plaster also has the advantage that any surplus can be recycled, almost eliminating waste, and plasterers do not need to haul water and mix the plaster from powder. A drywall skimmed with pre-mixed plaster can be painted in less than 24 hours, depending on the ambient temperature and humidity.

<span class="mw-page-title-main">Tube (fluid conveyance)</span>

A tube, or tubing, is a long hollow cylinder used for moving fluids or to protect electrical or optical cables and wires.

<span class="mw-page-title-main">Copper tubing</span> Type of metal tubing

Copper tubing is available in two basic types of tube—plumbing tube and air conditioning/refrigeration (ACR) tube, and in both drawn (hard) and annealed (soft) tempers. Because of its high level of corrosion resistance, it is used for water distribution systems, oil fuel transfer lines, non-flammable medical-gas systems, and as a refrigerant line in HVAC systems. Copper tubing is joined using flare connection, compression connection, pressed connection, or solder.

High-density solids pumps are hydrostatically operating machines which displace the medium being pumped and thus create a flow.

<span class="mw-page-title-main">Media dispenser</span>


A media dispenser or a culture media dispenser is a device for repeatedly delivering small fixed volumes of liquid such as a laboratory growth medium like molten agar or caustic or volatile solvents like toluene into a series of receptacles. It is often important that such dispensers operate without biological or chemical contamination, and so must be internally sealed from the environment and designed for easy cleaning and sterilization before use. At a minimum, a media dispenser consists of some kind of pump connected to a length of discharge tubing or a spout. Dispensers used in laboratories are also frequently connected to microcontrollers to regulate the speed and volume of the medium as it leaves the pump.

A rising film or vertical long tube evaporator is a type of evaporator that is essentially a vertical shell and tube heat exchanger. The liquid being evaporated is fed from the bottom into long tubes and heated with steam condensing on the outside of the tube from the shell side. This is to produce steam and vapour within the tube bringing the liquid inside to a boil. The vapour produced then presses the liquid against the walls of the tubes and causes the ascending force of this liquid. As more vapour is formed, the centre of the tube will have a higher velocity which forces the remaining liquid against the tube wall forming a thin film which moves upwards. This phenomenon of the rising film gives the evaporator its name.

A die in polymer processing is a metal restrictor or channel capable of providing a constant cross sectional profile to a stream of liquid polymer. This allows for continuous processing of shapes such as sheets, films, pipes, rods, and other more complex profiles. This is a continuous process, allowing for constant production, as opposed to a sequential (non-constant) process such as injection molding.

References

  1. The Mechanics' Magazine, Museum, Register, Journal & Gazette. Knight and Lacey. 1845. pp. 52–53.
  2. "Elastic-tube ptjmp". 17 April 1855.
  3. "Instrument for transfusion of blood".
  4. Dr. Michael E. DeBakey. "Methodist DeBakey Heart & Vascular Center". Archived from the original on 2011-07-27. Retrieved 2010-06-27.
  5. "Michael E. DeBakey". National Library of Medicine, Profiles in Science.
  6. Passaroni, A. C.; Silva, M. A.; Yoshida, W. B. (2015). "Cardiopulmonary bypass: Development of John Gibbon's heart-lung machine". Revista Brasileira de Cirurgia Cardiovascular. 30 (2): 235–245. doi:10.5935/1678-9741.20150021. PMC   4462970 . PMID   26107456.
  7. "Self-regulating blood pump".
  8. 1 2 Wu, Min Hsien; Huang, Song Bin; Cui, Zhanfeng; Cui, Zheng; Lee, Gwo Bin (2008). "Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing". Sensors and Actuators, B: Chemical. 129 (1): 231–240. doi:10.1016/j.snb.2007.07.145.
  9. Wagner, I.; Materne, E.-M.; Brincker, S.; Süssbier, U.; Frädrich, C.; Busek, M.; Marx, U. (2013). "A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture". Lab on a Chip. 13 (18): 3538–47. doi:10.1039/c3lc50234a. PMID   23648632.
  10. "Material Selection for Peristaltic Pump Tubing | Whitepaper | Grayline LLC".
  11. Treutel, Chuck (7 May 2009). "Peristaltic answer to caustic problems". World Pumps. Retrieved 10 July 2014.