Post-mortem chemistry

Last updated

Post-mortem chemistry, also called necrochemistry or death chemistry, is a subdiscipline of chemistry in which the chemical structures, reactions, processes and parameters of a dead organism is investigated. Post-mortem chemistry plays a significant role in forensic pathology. Biochemical analyses of vitreous humor, cerebrospinal fluid, blood and urine is important in determining the cause of death or in elucidating forensic cases. [1]

Contents

Post-mortem Interval Measurement

The post-mortem interval is the time that has elapsed since death. There are several different methods that can be used to estimate the post-mortem interval.

The vitreous humor is contained between the lens and the retina. Human eye diagram-sagittal view-NEI.jpg
The vitreous humor is contained between the lens and the retina.

Vitreous Humor Analysis

The vitreous humor is four to five milliliters of colorless gel in the vitreous body of the eye. Because of its location and the inert nature of the vitreous humor, it is resistant to some of the post-mortem changes that occur in the rest of the body. This is what makes it useful in determining the time since death, along with the fact that it is not affected by age, sex, or cause of death. [2] One of the reasons sampling vitreous humour is common is because if the sample being taken for examination is not in contact with blood it can then be clinically tested at a much lower cost. The viscosity of the vitreous humour will be increased after time of death due to water escaping. This requires for the sample to follow certain preparation steps before it can be used for analysis. Standard treatment prior to use of the sample might be required for the accuracy of pipetting. Such as diluting, centrifuging, heating and even the addition of certain analytes. [3] It is also useful as a source of DNA or for diagnosing diseases. The vitreous humor contains various electrolytes, including but not limited to sodium, potassium, chlorine, calcium, and magnesium. The concentrations of these electrolytes can be measured with analyzers and related to the time since death with various equations. [2] There are various equations because each study has different results, which results in different equations. This is because there are so many factors and differences in experiments that a single equation cannot be determined to be better than the rest. One of these factors is temperature. At higher temperatures, the concentrations are less stable and the degradation of the sample speeds up. [4] The temperature can be controlled once a sample is in the lab, but until then, the body will be the same temperature as the environment it was in. If the same equation is used for a sample that was not kept cold, then the result will not be accurate if the equation is for samples kept cold. Even though different equations have been found, the general trends are in agreement. As the time of death increases, the potassium concentration in the vitreous humor rises, and the sodium and calcium concentrations fall. The ratio of potassium to sodium decreases linearly with time. The reason that the potassium levels rise after death is because of a leak in the cell membrane that allows the concentration to reach equilibrium with the potassium levels in the blood plasma. This method is not exact, but a good estimate for the time since death can be obtained. [2]

Cerebrospinal Fluid Analysis

Cerebrospinal fluid is found in the brain and spinal cord. It is a clear fluid that provides a barrier to absorb shock and prevent injury to the brain. It is useful for diagnosing neuro-degenerative diseases such as Alzheimers. There are various substances in the cerebrospinal fluid that can be measured including urea, glucose, potassium, chloride, sodium, protein, creatinine, calcium, alkaline phosphatase, and cortisol. [5] Different things can be learned about the person or how the died by looking at the concentrations of some of these substances. For example, high levels of urea can indicate kidney damage. High levels of cortisol, the hormone released under stress, could indicate a violent death. Creatinine is stable post-mortem, so the concentration at death is preserved. This is also helpful to determine the kidney function of an individual. Sodium and Potassium can also be measured in the cerebrospinal fluid to predict the time since death, [5] but it is not as accurate as it would be if the vitreous humor was used, since it has a lower correlation. [4]

Toxicological Analysis

Toxicology refers to the science of the chemical and physical properties of toxic substances. Samples from a body are analyzed for drugs or other toxic substances. The concentrations are measured and the substance's contribution to a death can be determined. This is done by comparing concentrations to lethal limits. The most common samples analyzed are blood, urine, kidney, liver, and brain. The samples are usually put through various tests, but the most common instrument used to quantify and determine a substance is gas chromatography-mass spectrometry (GC-MS). These instruments produce chromatograms of the sample, which are then compared to a database of known substances. [6] In blood samples, the substance can usually be found, but in the liver, kidneys, and urine the metabolite may be the only substance that can be found. A metabolite is the broken down version of the original substance after it has gone through digestion and/or other biological processes. Substances can take anywhere from hours to weeks to metabolize and leave the body and have different retention times in different parts of the body. For example, cocaine can be detected in the blood for two to ten days, while it can be detected in urine for two to five days.

The results of post-mortem toxicology testing are interpreted alongside the victim's history, a thorough investigation of the scene, and autopsy and ancillary study findings to determine the manner of death. [7]


Blood Analysis

When blood is used for toxicology testing, drugs of abuse are the usual targets of analysis. Other substances that may be looked for are medications that are known to be prescribed to the individual or poisons if it is suspected. [8]

Tissue Analysis

Tissues can be analyzed to help determine a cause of death. The tissue samples that are most commonly analyzed are the liver, kidney, brain, and lungs. [6]

Hair and Fingernail Analysis

Hair samples can also be analyzed post-mortem to determine if there was a history of drug use or poisoning due to the fact that many substances stay in the hair for a long time. The hair can be separated into sections and a month by month analysis can be performed. Fingernails and hair follicles can also be analyzed for DNA evidence. [6]

Gastric Contents

The stomach contents can also be analyzed. This can help with the post-mortem interval identification by looking at the stage of digestion. The contents can also be analyzed for drugs or poisons to help determine a cause of death if it is unknown.

Post-mortem Diagnosis

Post-mortem diagnosis is the use of post-mortem chemistry analysis tests to diagnose a disease after someone has died. Some diseases are unknown until death, or were not correctly diagnosed earlier. One way that diseases can be diagnosed is by examining the concentrations of certain substances in the blood or other sample types. For example, diabetic ketoacidosis can be diagnosed by looking at the concentration glucose levels in the vitreous humor, ketone bodies, glycated hemoglobin, or glucose in the urine. Dehydration can be diagnosed by looking for increased urea nitrogen, sodium, and chloride levels, with normal creatinine levels in the vitreous humor. Endocrine disorders can be diagnosed by looking at hormone concentrations and epinephrine and insulin levels. Liver diseases can be diagnosed by looking at the ratio of albumin and globulin in the sample. [9]


Post-Mortem Biochemistry

Blood pH and concentrations of several chemicals are tested in a corpse to help determine the time of death of the victim, also known as the post-mortem interval. These chemicals include lactic acid, hypoxanthine, uric acid, ammonia, NADH and formic acid. [10]

The decrease in the concentration of oxygen because of the lack of circulation causes a dramatic switch from aerobic to anaerobic metabolism [10]

This type of analysis can be used to help diagnose various different types of deaths such as: drowning, anaphylactic shock, hypothermia or any deaths related to alcohol or diabetes. Although these types of diagnosis become very difficult because of the changes to the body and biochemical measurements vary after death. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Clinical chemistry</span> Area of clinical pathology that is generally concerned with analysis of bodily fluids

Clinical chemistry is a division in medical laboratory sciences focusing on qualitative tests of important compounds, referred to as analytes or markers, in bodily fluids and tissues using analytical techniques and specialized instruments. This interdisciplinary field includes knowledge from medicine, biology, chemistry, biomedical engineering, informatics, and an applied form of biochemistry.

<span class="mw-page-title-main">Nephron</span> Microscopic structural and functional unit of the kidney.

The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structure called Bowman's capsule. The renal tubule extends from the capsule. The capsule and tubule are connected and are composed of epithelial cells with a lumen. A healthy adult has 1 to 1.5 million nephrons in each kidney. Blood is filtered as it passes through three layers: the endothelial cells of the capillary wall, its basement membrane, and between the foot processes of the podocytes of the lining of the capsule. The tubule has adjacent peritubular capillaries that run between the descending and ascending portions of the tubule. As the fluid from the capsule flows down into the tubule, it is processed by the epithelial cells lining the tubule: water is reabsorbed and substances are exchanged ; first with the interstitial fluid outside the tubules, and then into the plasma in the adjacent peritubular capillaries through the endothelial cells lining that capillary. This process regulates the volume of body fluid as well as levels of many body substances. At the end of the tubule, the remaining fluid—urine—exits: it is composed of water, metabolic waste, and toxins.

Putrefaction is the fifth stage of death, following pallor mortis, algor mortis, rigor mortis, and livor mortis. This process references the breaking down of a body of an animal post-mortem. In broad terms, it can be viewed as the decomposition of proteins, and the eventual breakdown of the cohesiveness between tissues, and the liquefaction of most organs. This is caused by the decomposition of organic matter by bacterial or fungal digestion, which causes the release of gases that infiltrate the body's tissues, and leads to the deterioration of the tissues and organs. The approximate time it takes putrefaction to occur is dependent on various factors. Internal factors that affect the rate of putrefaction include the age at which death has occurred, the overall structure and condition of the body, the cause of death, and external injuries arising before or after death. External factors include environmental temperature, moisture and air exposure, clothing, burial factors, and light exposure.

<span class="mw-page-title-main">Vitreous body</span> Gel in eyeballs

The vitreous body is the clear gel that fills the space between the lens and the retina of the eyeball in humans and other vertebrates. It is often referred to as the vitreous humor or simply "the vitreous". Vitreous fluid or "liquid vitreous" is the liquid component of the vitreous gel, found after a vitreous detachment. It is not to be confused with the aqueous humor, the other fluid in the eye that is found between the cornea and lens.

<span class="mw-page-title-main">Automated analyser</span>

An automated analyser is a medical laboratory instrument designed to measure various substances and other characteristics in a number of biological samples quickly, with minimal human assistance. These measured properties of blood and other fluids may be useful in the diagnosis of disease.

<span class="mw-page-title-main">Renal physiology</span> Study of the physiology of the kidney

Renal physiology is the study of the physiology of the kidney. This encompasses all functions of the kidney, including maintenance of acid-base balance; regulation of fluid balance; regulation of sodium, potassium, and other electrolytes; clearance of toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pressure; production of various hormones, such as erythropoietin; and activation of vitamin D.

<span class="mw-page-title-main">Assessment of kidney function</span> Ways of assessing the function of the kidneys

Assessment of kidney function occurs in different ways, using the presence of symptoms and signs, as well as measurements using urine tests, blood tests, and medical imaging.

<span class="mw-page-title-main">Post-mortem interval</span> Time that has elapsed since a person has died

The post-mortem interval (PMI) is the time that has elapsed since an individual's death. When the time of death is not known, the interval may be estimated, and so an approximate time of death established. Postmortem interval estimations can range from hours, to days or even years depending on the type of evidence present. There are standard medical and scientific techniques supporting such an estimation.

<span class="mw-page-title-main">Electrolyte imbalance</span> Medical condition

Electrolyte imbalance, or water-electrolyte imbalance, is an abnormality in the concentration of electrolytes in the body. Electrolytes play a vital role in maintaining homeostasis in the body. They help to regulate heart and neurological function, fluid balance, oxygen delivery, acid–base balance and much more. Electrolyte imbalances can develop by consuming too little or too much electrolyte as well as excreting too little or too much electrolyte.

Hypernatremia, also spelled hypernatraemia, is a high concentration of sodium in the blood. Early symptoms may include a strong feeling of thirst, weakness, nausea, and loss of appetite. Severe symptoms include confusion, muscle twitching, and bleeding in or around the brain. Normal serum sodium levels are 135–145 mmol/L. Hypernatremia is generally defined as a serum sodium level of more than 145 mmol/L. Severe symptoms typically only occur when levels are above 160 mmol/L.

<span class="mw-page-title-main">Urine test</span> Medical test of urine

A urine test is any medical test performed on a urine specimen. The analysis of urine is a valuable diagnostic tool because its composition reflects the functioning of many body systems, particularly the kidneys and urinary system, and specimens are easy to obtain. Common urine tests include the routine urinalysis, which examines the physical, chemical, and microscopic properties of the urine; urine drug screening; and urine pregnancy testing.

<span class="mw-page-title-main">Forensic toxicology</span> Use of toxicology for investigations

Forensic toxicology is the use of toxicology and disciplines such as analytical chemistry, pharmacology and clinical chemistry to aid medical or legal investigation of death, poisoning, and drug use. The primary concern for forensic toxicology is not the legal outcome of the toxicological investigation or the technology utilized, but rather the obtention and interpretation of results. A toxicological analysis can be done to various kinds of samples. A forensic toxicologist must consider the context of an investigation, in particular any physical symptoms recorded, and any evidence collected at a crime scene that may narrow the search, such as pill bottles, powders, trace residue, and any available chemicals. Provided with this information and samples with which to work, the forensic toxicologist must determine which toxic substances are present, in what concentrations, and the probable effect of those chemicals on the person.

<span class="mw-page-title-main">Forensic chemistry</span> Forensic application of the study of chemistry

Forensic chemistry is the application of chemistry and its subfield, forensic toxicology, in a legal setting. A forensic chemist can assist in the identification of unknown materials found at a crime scene. Specialists in this field have a wide array of methods and instruments to help identify unknown substances. These include high-performance liquid chromatography, gas chromatography-mass spectrometry, atomic absorption spectroscopy, Fourier transform infrared spectroscopy, and thin layer chromatography. The range of different methods is important due to the destructive nature of some instruments and the number of possible unknown substances that can be found at a scene. Forensic chemists prefer using nondestructive methods first, to preserve evidence and to determine which destructive methods will produce the best results.

The anion gap is a value calculated from the results of multiple individual medical lab tests. It may be reported with the results of an electrolyte panel, which is often performed as part of a comprehensive metabolic panel.

<span class="mw-page-title-main">Metabolic alkalosis</span> Medical condition

Metabolic alkalosis is a metabolic condition in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate, or alternatively a direct result of increased bicarbonate concentrations. The condition typically cannot last long if the kidneys are functioning properly.

<span class="mw-page-title-main">Forensic biology</span> Forensic application of the study of biology

Forensic biology is a branch of forensics where biology is applied to associate a person — whether suspect or victim, to a location, an item, another person.

In forensic entomology, entomotoxicology is the analysis of toxins in arthropods that feed on carrion. Using arthropods in a corpse or at a crime scene, investigators can determine whether toxins were present in a body at the time of death. This technique is a major advance in forensics; previously, such determinations were impossible in the case of severely decomposed bodies devoid of intoxicated tissue and bodily fluids. Ongoing research into the effects of toxins on arthropod development has also allowed better estimations of postmortem intervals.

Ethylene glycol poisoning is poisoning caused by drinking ethylene glycol. Early symptoms include intoxication, vomiting and abdominal pain. Later symptoms may include a decreased level of consciousness, headache, and seizures. Long term outcomes may include kidney failure and brain damage. Toxicity and death may occur after drinking even in a small amount as ethylene glycol is more toxic than other diols.

<span class="mw-page-title-main">Intravenous sodium bicarbonate</span>

Intravenous sodium bicarbonate, also known as sodium hydrogen carbonate, is a medication primarily used to treat severe metabolic acidosis. For this purpose it is generally only used when the pH is less than 7.1 and when the underlying cause is either diarrhea, vomiting, or the kidneys. Other uses include high blood potassium, tricyclic antidepressant overdose, and cocaine toxicity as well as a number of other poisonings. It is given by injection into a vein.

<span class="mw-page-title-main">Diuretic</span> Substance that promotes the production of urine

A diuretic is any substance that promotes diuresis, the increased production of urine. This includes forced diuresis. A diuretic tablet is sometimes colloquially called a water tablet. There are several categories of diuretics. All diuretics increase the excretion of water from the body, through the kidneys. There exist several classes of diuretic, and each works in a distinct way. Alternatively, an antidiuretic, such as vasopressin, is an agent or drug which reduces the excretion of water in urine.

References

  1. Cristian Palmiere & Patrice Mangin (2012). "Postmortem chemistry update part I" (PDF). Int J Legal Med . 126 (2): 187–198. doi:10.1007/s00414-011-0625-y. PMID   21947676. S2CID   30844072.
  2. 1 2 3 Yang, Mingzhen; Li, Huijun; Yang, Tiantong; Ding, Zijiao; Wu, Shifan; Qiu, Xingang; Liu, Qian (2017-08-17). "A Study on the Estimation of Postmortem Interval Based on Environmental Temperature and Concentrations of Substance in Vitreous Humor". Journal of Forensic Sciences. 63 (3): 745–751. doi:10.1111/1556-4029.13615. ISSN   0022-1198. PMID   28833136. S2CID   19059480.
  3. 1 2 Belsay, S. L., & Flanagan, R. J. (2016). Postmortem biochemistry: Current applications. Journal of Forensic and Legal Medicine, 41, 49–57. Retrieved March 30, 2022, from doi : 10.1016/j.jflm.2016.04.011.
  4. 1 2 Swain, Rajanikanta; Kumar, Adarsh; Sahoo, Jyotiranjan; Lakshmy, R.; Gupta, S.K.; Bhardwaj, D.N.; Pandey, R.M. (2015-11-01). "Estimation of post-mortem interval: A comparison between cerebrospinal fluid and vitreous humour chemistry". Journal of Forensic and Legal Medicine. 36: 144–148. doi:10.1016/j.jflm.2015.09.017. ISSN   1752-928X. PMID   26454503.
  5. 1 2 Arroyo, A.; Rosel, P.; Marron, T. (2005-06-01). "Cerebrospinal fluid: postmortem biochemical study". Journal of Clinical Forensic Medicine. 12 (3): 153–156. doi:10.1016/j.jcfm.2004.11.001. ISSN   1353-1131. PMID   15914311.
  6. 1 2 3 "Toxicology: How It's Done". www.forensicsciencesimplified.org. Retrieved 2018-06-23.
  7. Kastenbaum, H.; Proe, L.; Dvorscak, L. (2019-01-25). “Forensic toxicology in death investigation”. pg 332-342
  8. "Blood Tests | National Heart, Lung, and Blood Institute (NHLBI)". www.nhlbi.nih.gov. Retrieved 2018-06-23.
  9. "Postmortem chemistry". www.pathologyoutlines.com. Retrieved 2018-06-23.
  10. 1 2 Donaldson AE, Lamont IL (2013) Biochemistry Changes That Occur after Death: Potential Markers for Determining Post-Mortem Interval. PLoS ONE 8(11): e82011. doi : 10.1371/journal.pone.0082011