Phenoptosis

Last updated

Phenoptosis (from pheno: showing or demonstrating; ptosis: programmed death, "falling off") is a conception of the self-programmed death of an organism proposed by Vladimir Skulachev in 1999.

Contents

In many species, including salmon and marsupial mice, under certain circumstances, especially following reproduction, an organism's genes will cause the organism to rapidly degenerate and die off. Recently this has been referred to as "fast phenoptosis" as aging is being explored as "slow phenoptosis". [1] Phenoptosis is a common feature of living species, whose ramifications for humans is still being explored. The concept of programmed cell death was used before, by Lockshin & Williams [2] in 1964 in relation to insect tissue development, around eight years before "apoptosis" was coined. The term 'phenoptosis' is a neologism associated with Skulachev's proposal.

Evolutionary significance

In multicellular organisms, worn-out and ineffective cells are dismantled and recycled for the greater good of the whole organism in a process called apoptosis. [3] It is believed that phenoptosis is an evolutionary mechanism that culls out the damaged, aged, infectious, or those in direct competition with their own offspring [4] for the good of the species. Special circumstances need to exist for the "phenoptosis" strategy to be an evolutionarily stable strategy (ESS), let alone the only ESS. Examples of "phenoptosis" given below are really examples of semelpary - a life history with a single reproduction followed by death, which evolves not "for the good of the species" but as the ESS in the conditions of high adult-to-juvenile mortality ratio. The elimination of parts detrimental to the organism or individuals detrimental to the species has been deemed "The samurai law of biology" – it is better to die than to be wrong. [5] Stress-induced, acute, or fast phenoptosis is the rapid deterioration of an organism induced by a life event such as breeding. Elimination of the parent provides space for fitter offspring. As a species this has been advantageous particularly to species that die immediately after spawning. [4] Age-induced, soft, or slow phenoptosis is the slow deterioration and death of an organism due to accumulated stresses over long periods of time. In short, it has been proposed that aging, heart disease, cancer, and other age related ailments are means of phenoptosis. "Death caused by aging clears the population of ancestors and frees space for progeny carrying new useful traits." [5] It has also been proposed that age provides a selective advantage to brains over brawn. [6] An example made by V. P. Skulachev provides that of two hares, one faster and one smarter, the faster hare may have a selective advantage in youth but as aging occurs and muscles deteriorate it is the smarter hare that now has the selective advantage.

Examples in nature

Proposed mechanisms

Mitochondrial ROS – The production of ROS by the mitochondria. This causes oxidative damage to the inner compartment of the mitochondria and destruction of the mitochondria. [7]

Clk1 gene – the gene thought to be responsible to aging due to mitochondrial ROS. [13]

EF2 kinase – Blocks phosphorylation of elongation factor 2 thus blocking protein synthesis. [14]

Glucocorticoid regulation – A common route for phenoptosis is breakdown of glucocorticoid regulation and inhibition, leading to massive excess of these corticosteroids in the body. [5]

Other examples

Robert Sapolsky discusses phenoptosis in his book Why Zebras Don't Get Ulcers , 3rd Ed., p. 245-247. He states that:

If you catch salmon right after they spawn... you find they have huge adrenal glands, peptic ulcers, and kidney lesions, their immune systems have collapsed... [and they] have stupendously high glucocorticoid concentrations in their bloodstreams. When salmon spawn, regulation of their glucocortocoid secretion breaks down... But is the glucocorticoid excess really responsible for their death? Yup. Take a salmon right after spawning, remove its adrenals, and it will live for a year afterward.

The bizarre thing is that this sequence... not only occurs in five species of salmon, but also among a dozen species of Australian marsupial mice... Pacific salmon and marsupial mice are not close relatives. At least twice in evolutionary history, completely independently, two very different sets of species have come up with the identical trick: if you want to degenerate very fast, secrete a ton of glucocorticoids.

See also

Related Research Articles

<i>Caenorhabditis elegans</i> Free-living species of nematode

Caenorhabditis elegans is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek caeno- (recent), rhabditis (rod-like) and Latin elegans (elegant). In 1900, Maupas initially named it Rhabditides elegans. Osche placed it in the subgenus Caenorhabditis in 1952, and in 1955, Dougherty raised Caenorhabditis to the status of genus.

Programmed cell death is the death of a cell as a result of events inside of a cell, such as apoptosis or autophagy. PCD is carried out in a biological process, which usually confers advantage during an organism's lifecycle. For example, the differentiation of fingers and toes in a developing human embryo occurs because cells between the fingers apoptose; the result is that the digits are separate. PCD serves fundamental functions during both plant and animal tissue development.

The free radical theory of aging states that organisms age because cells accumulate free radical damage over time. A free radical is any atom or molecule that has a single unpaired electron in an outer shell. While a few free radicals such as melanin are not chemically reactive, most biologically relevant free radicals are highly reactive. For most biological structures, free radical damage is closely associated with oxidative damage. Antioxidants are reducing agents, and limit oxidative damage to biological structures by passivating them from free radicals.

<span class="mw-page-title-main">Reactive oxygen species</span> Highly reactive molecules formed from diatomic oxygen (O₂)

In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen. Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen.

The DAF-2 gene encodes for the insulin-like growth factor 1 (IGF-1) receptor in the worm Caenorhabditis elegans. DAF-2 is part of the first metabolic pathway discovered to regulate the rate of aging. DAF-2 is also known to regulate reproductive development, resistance to oxidative stress, thermotolerance, resistance to hypoxia, and resistance to bacterial pathogens. Mutations in DAF-2 have been shown by Cynthia Kenyon to double the lifespan of the worms. In a 2007 episode of WNYC’s Radiolab, Kenyon called DAF-2 "the grim reaper gene.”

<span class="mw-page-title-main">Plastoquinone</span> Molecule which moves electron in photosynthesis

Plastoquinone (PQ) is an isoprenoid quinone molecule involved in the electron transport chain in the light-dependent reactions of photosynthesis. The most common form of plastoquinone, known as PQ-A or PQ-9, is a 2,3-dimethyl-1,4-benzoquinone molecule with a side chain of nine isoprenyl units. There are other forms of plastoquinone, such as ones with shorter side chains like PQ-3 as well as analogs such as PQ-B, PQ-C, and PQ-D, which differ in their side chains. The benzoquinone and isoprenyl units are both nonpolar, anchoring the molecule within the inner section of a lipid bilayer, where the hydrophobic tails are usually found.

<span class="mw-page-title-main">COQ7</span> Protein-coding gene in the species Homo sapiens

Mitochondrial 5-demethoxyubiquinone hydroxylase, also known as coenzyme Q7, hydroxylase, is an enzyme that in humans is encoded by the COQ7 gene. The clk-1 (clock-1) gene encodes this protein that is necessary for ubiquinone biosynthesis in the worm Caenorhabditis elegans and other eukaryotes. The mouse version of the gene is called mclk-1 and the human, fruit fly and yeast homolog COQ7.

Enquiry into the evolution of ageing, or aging, aims to explain why a detrimental process such as ageing would evolve, and why there is so much variability in the lifespans of organisms. The classical theories of evolution suggest that environmental factors, such as predation, accidents, disease, and/or starvation, ensure that most organisms living in natural settings will not live until old age, and so there will be very little pressure to conserve genetic changes that increase longevity. Natural selection will instead strongly favor genes which ensure early maturation and rapid reproduction, and the selection for genetic traits which promote molecular and cellular self-maintenance will decline with age for most organisms.

Apoptosis is the process of programmed cell death. From its early conceptual beginnings in the 1950s, it has exploded as an area of research within the life sciences community. As well as its implication in many diseases, it is an integral part of biological development.

<span class="mw-page-title-main">Michael Ristow</span> German medical researcher (born 1967)

Michael Ristow is a German medical researcher who has published influential articles on biochemical aspects of mitochondrial metabolism and particularly the possibly health-promoting role of reactive oxygen species in diseases like type 2 diabetes, obesity and cancer, as well as general aging due to a process called mitohormesis.

<span class="mw-page-title-main">SOD2</span> Enzyme

Superoxide dismutase 2, mitochondrial (SOD2), also known as manganese-dependent superoxide dismutase (MnSOD), is an enzyme which in humans is encoded by the SOD2 gene on chromosome 6. A related pseudogene has been identified on chromosome 1. Alternative splicing of this gene results in multiple transcript variants. This gene is a member of the iron/manganese superoxide dismutase family. It encodes a mitochondrial protein that forms a homotetramer and binds one manganese ion per subunit. This protein binds to the superoxide byproducts of oxidative phosphorylation and converts them to hydrogen peroxide and diatomic oxygen. Mutations in this gene have been associated with idiopathic cardiomyopathy (IDC), premature aging, sporadic motor neuron disease, and cancer.

Cell death abnormality gene 9 (CED-9), also known as apoptosis regulator CED-9, is a gene found in Caenorhabditis elegans that inhibits/represses programmed cell death (apoptosis). The gene was discovered while searching for mutations in the apoptotic pathway after the discovery of the apoptosis promoting genes CED-3 and CED-4. The gene gives rise to the apoptosis regulator CED-9 protein found as an Integral membrane protein in the mitochondrial membrane. The protein is homologous to the human apoptotic regulator Bcl-2 as well as all other proteins in the Bcl-2 protein family. CED-9 is involved in the inhibition of CED-4 which is the activator of the CED-3 caspase. Because of the pathway homology with humans as well as the specific protein homology, CED-9 has been used to represent the human cell apoptosis interactions of Bcl-2 in research.

Mitophagy is the selective degradation of mitochondria by autophagy. It often occurs to defective mitochondria following damage or stress. The process of mitophagy was first described over a hundred years ago by Margaret Reed Lewis and Warren Harmon Lewis. Ashford and Porter used electron microscopy to observe mitochondrial fragments in liver lysosomes by 1962, and a 1977 report suggested that "mitochondria develop functional alterations which would activate autophagy." The term "mitophagy" was in use by 1998.

<span class="mw-page-title-main">Daf-16</span> Ortholog

DAF-16 is the sole ortholog of the FOXO family of transcription factors in the nematode Caenorhabditis elegans. It is responsible for activating genes involved in longevity, lipogenesis, heat shock survival and oxidative stress responses. It also protects C.elegans during food deprivation, causing it to transform into a hibernation - like state, known as a Dauer. DAF-16 is notable for being the primary transcription factor required for the profound lifespan extension observed upon mutation of the insulin-like receptor DAF-2. The gene has played a large role in research into longevity and the insulin signalling pathway as it is located in C. elegans, a successful ageing model organism.

David Gems is a British geneticist who studies the biology and genetics of ageing (biogerontology). He is Professor of Biogerontology at the Research Department of Genetics, Evolution and Environment, University College London and he is a co-founder and Research Director of the UCL Institute of Healthy Ageing. His work concerns understanding the underlying causes of aging. His research laboratory tests theories of aging and develops new ones using a short-lived animal model C. elegans.

SkQ is a class of mitochondria-targeted antioxidants, developed by Professor Vladimir Skulachev and his team. In a broad sense, SkQ is a lipophilic cation, linked via saturated hydrocarbon chain to an antioxidant. Due to its lipophilic properties, SkQ can effectively penetrate through various cell membranes. The positive charge provides directed transport of the whole molecule including antioxidant moiety into the negatively charged mitochondrial matrix. Substances of this type, various drugs that are based on them, as well as methods of their use are patented in Russia and other countries such as United States, China, Japan, and in Europe. Sometimes the term SkQ is used in a narrow sense for the denomination of a cationic derivative of the plant antioxidant plastoquinone.

<span class="mw-page-title-main">Genetics of aging</span> Overview of the genetics of aging

Genetics of aging is generally concerned with life extension associated with genetic alterations, rather than with accelerated aging diseases leading to reduction in lifespan.

<span class="mw-page-title-main">Mitochondrial ROS</span> Reactive oxygen species produced by mitochondria

Mitochondrial ROS are reactive oxygen species (ROS) that are produced by mitochondria. Generation of mitochondrial ROS mainly takes place at the electron transport chain located on the inner mitochondrial membrane during the process of oxidative phosphorylation. Leakage of electrons at complex I and complex III from electron transport chains leads to partial reduction of oxygen to form superoxide. Subsequently, superoxide is quickly dismutated to hydrogen peroxide by two dismutases including superoxide dismutase 2 (SOD2) in mitochondrial matrix and superoxide dismutase 1 (SOD1) in mitochondrial intermembrane space. Collectively, both superoxide and hydrogen peroxide generated in this process are considered as mitochondrial ROS.

<span class="mw-page-title-main">Mitochondrial theory of ageing</span> Theory of ageing

The mitochondrial theory of ageing has two varieties: free radical and non-free radical. The first is one of the variants of the free radical theory of ageing. It was formulated by J. Miquel and colleagues in 1980 and was developed in the works of Linnane and coworkers (1989). The second was proposed by A. N. Lobachev in 1978.

<span class="mw-page-title-main">Exopher</span>

Exophers are a type of membrane-bound extracellular vesicle (EV) that are released by budding out of cells into the extracellular space. Exophers can be released by neurons and muscle in the nematode Caenorhabditis elegans and also from murine cardiomyocytes. Exophers are notable for their large size, averaging approximately four microns in diameter, and they are able to expel whole organelles, such as mitochondria and lysosomes as cargo. An exopher can initially remain attached to the cell that produced it by a membranous filament that resembles a tunneling nanotube. Exophers share similarities with large oncosomes, but they differ in that they are produced by physiologically normal cells instead of aberrant cells associated with tumors.

References

  1. Skulachev, V.P. (November 1997). "Organism's Aging is a Special Biological Function Rather than a Result of Breakdown of a Complex Biological System: Biochemical Support of Weismann's Hypothesis". Biokhimiya. 62 (12): 1191–1195. PMID   9467841.
  2. Lockshin RA, Williams CM (1964). "Programmed cell death—II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths". Journal of Insect Physiology. 10 (4): 643–649. doi:10.1016/0022-1910(64)90034-4.
  3. Bulletin of the Atomic Scientists. Educational Foundation for Nuclear Science, Inc. September 1971.
  4. 1 2 3 Weismann, A (1889). Essays upon Heredity and Kindred Bio_. Oxford: Clarendon Press. p. 23. ISBN   978-1172574988.
  5. 1 2 3 Skulachev, VP (Apr 2002). "Programmed death phenomena: from organelle to organism". Ann N Y Acad Sci. 959 (1): 214–237. Bibcode:2002NYASA.959..214S. doi:10.1111/j.1749-6632.2002.tb02095.x. PMID   11976198. S2CID   21320293.
  6. Skulachev, VP (November 2011). "Aging as a particular case of phenoptosis, the programmed death of an organism (A response to Kirkwood and Melov "On the programmed/non-programmed nature of ageing within the life history")". Aging. 3 (11): 1120–1123. doi:10.18632/aging.100403. PMC   3249457 . PMID   22146104.
  7. 1 2 3 Skulachev, VP (December 1999). "Phenoptosis: programmed death of an organism". Biokhimiya. 64 (12): 1418–1426. PMID   10648966.
  8. 1 2 3 Severin, FF; Skulachev, VP (2011). "Programmed Cell Death as a Target to Interrupt the Aging Program". Advances in Gerontology. 1 (1): 16–27. doi:10.1134/S2079057011010139. PMID   19827675. S2CID   22093856.
  9. Thompson, CR; Kay, RR (November 2000). "Cell-FateChoice in Dictyostelium: Intrinsic Biases Modulate Sensitivity to DIF Signaling". Developmental Biology. 227 (1): 56–64. doi: 10.1006/dbio.2000.9877 . PMID   11076676.
  10. Pestov, NB; Shakhparonov, M.; Korneenko, T. (Sep–Oct 2011). "Matricide in Caenorhabditis elegans as an example of programmed death of an animal organism: The role of mitochondrial oxidative stress". Russian Journal of Bioorganic Chemistry. 37 (5): 705–710. doi:10.1134/S106816201105013X. PMID   22332368. S2CID   13303035.
  11. Nesis, K (1997). "A Cruel Love of Squids". The Russian Science:To Withstand and Resurrect: 358–365.
  12. Kirkwood, TB; Cremer T (1982). "Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress" (PDF). Hum Genet. 60 (2): 101–121. doi:10.1007/BF00569695. PMID   7042533. S2CID   25744635.
  13. Liu, X; Jiang, N.; Bigras, E.; Shoubridge, E.; Hekimi, S. (15 Oct 2005). "Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice". Genes Dev. 19 (20): 2424–34. doi:10.1101/gad.1352905. PMC   1257397 . PMID   16195414.
  14. Holley, CL; Michael R. Olson; Daniel A. Colón-Ramos; Sally Kornbluth (June 2002). "Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition". Nat Cell Biol. 4 (6): 439–444. doi:10.1038/ncb798. PMC   2713440 . PMID   12021770.