Excess mortality

Last updated
The COVID-19 pandemic in Spain caused significant excess mortality (expected rate in black, with confidence intervals in gray). Reporting lags lead to undercounting in the latest (rightmost) data. Daily mortality in Spain April 2018-April 2020.png
The COVID-19 pandemic in Spain caused significant excess mortality (expected rate in black, with confidence intervals in gray). Reporting lags lead to undercounting in the latest (rightmost) data.

In epidemiology, the excess deaths or excess mortality is a measure of the increase in the number deaths during a time period and/or in a certain group, as compared to the expected value or statistical trend during a reference period (typically of five years) or in a reference population. It may typically be measured in percentage points, or in number of deaths per time unit.

Contents

A short period of excess mortality that is followed by a compensating period of mortality deficit (i.e., fewer deaths than expected, because those people have died at a younger age) is quite common, and is also known as "harvesting". Mortality deficit in a particular time period can be caused by deaths displaced to an earlier time (due to harvesting by an event in the past) or deaths displaced to a future time (due to lives being saved, also called "avoided mortality"). [1] [2]

Mortality displacement is the occurrence of deaths at an earlier time than they would have otherwise occurred, meaning the deaths are displaced from the future into the present, resulting in a changed life expectancy.

As opposed to number of registered fatalities of a certain death cause, such as a specific virus, a temporary excess mortality, and the mortality displacement, are measures that reflect many combined causes. The dominant reason may be events such as heat waves, cold spells, epidemics and pandemics (especially influenza pandemics), famine or war, and allows for estimates of the mortality caused by those events combined with other indirect health effects. Excess mortality is also studied for certain groups of people, such as elder, men, unemployed, etcetera.

Heat waves

During heat waves, for instance, there are often additional deaths observed in the population, affecting especially older adults and those who are sick. After some periods with excess mortality, however, there has also been observed a decrease in overall mortality during the subsequent weeks. Such short-term forward shift in mortality rate is also referred to as harvesting effect. The subsequent, compensatory reduction in mortality suggests that the heat wave especially affected those whose health was already so compromised that they "would have died in the short-term anyway" due to other causes, meaning that not all the deaths caused by the heat wave could have been avoided by addressing the effects of heat waves. [3]

Measurement

Different institutions and initiatives offer weekly data to monitor excess mortality. Significant efforts to capture short term mortality data have been made along 2020 due to the pandemic of the coronavirus disease 2019 (COVID-19) and its worldwide effects. Eurostat launched in April 2020 a collection of weekly death data that provide for most of the EU countries weekly death data series by 5-year age groups and sex in NUTS3 regions within the countries starting from the year 2000. [4] This temporary data collection was established in order to support the policy and research efforts related to the COVID-19 pandemic. Data are transmitted by the National Statistical Institutes on voluntary basis and it is being updated, depending on the country, weekly. [5]

In May 2020, the Human Mortality Database project launched a new data series, the Short-term Mortality Fluctuation series (STMF), offering freely available weekly death counts by age and sex for a growing number of countries (34 in October 2020), as well as a visualization tool that captures the excess mortality on a weekly basis. The STMF was established to provide data for scientific analysis of all-cause mortality fluctuations by week within each calendar year in standard formats. Part of the Human Mortality Database use a joint project of two teams based in the Laboratory of Demographic Data at the Max Planck Institute for Demographic Research (MPIDR) and at the Department of Demography of the University of California, Berkeley (UCB).

The collaborative network EuroMOMO (European mortality monitoring activity), monitors mortality across 24 European countries in order to detect and measure excess deaths related to seasonal influenza, pandemics, and other public health threats. EuroMOMO is hosted and maintained by the Department of Infectious Disease Epidemiology and Prevention of Copenhagen, Denmark. They offer regular reports (weekly bulletins), graphs and maps showing the present levels of mortality but the network does not publish openly data. Individual partners may decide to share openly some selected national data, like for instance, MoMo-Spain. The study centre at the Statens Serum Institut in Copenhagen publishes a weekly situation report and regular scientific articles. Periods of high excess mortality have also been described for the United States. [6]

Related Research Articles

<span class="mw-page-title-main">Pandemic</span> Widespread, often global, epidemic of severe infectious disease

A pandemic is an epidemic of an infectious disease that has spread across a large region, for instance multiple continents or worldwide, affecting a substantial number of individuals. Widespread endemic diseases with a stable number of infected individuals such as recurrences of seasonal influenza are generally excluded as they occur simultaneously in large regions of the globe rather than being spread worldwide.

<span class="mw-page-title-main">Spanish flu</span> 1918–1920 global influenza pandemic caused by the H1N1 influenza A virus

The 1918-20 flu pandemic, also known as the Great Influenza epidemic or by the common misnomer Spanish flu, was an exceptionally deadly global influenza pandemic caused by the H1N1 influenza A virus. The earliest documented case was March 1918 in the state of Kansas in the United States, with further cases recorded in France, Germany and the United Kingdom in April. Two years later, nearly a third of the global population, or an estimated 500 million people, had been infected in four successive waves. Estimates of deaths range from 17 million to 50 million, and possibly as high as 100 million, making it one of the deadliest pandemics in history.

The Hong Kong flu, also known as the 1968 flu pandemic, was a flu pandemic whose outbreak in 1968 and 1969 killed between one and four million people globally. It is among the deadliest pandemics in history, and was caused by an H3N2 strain of the influenza A virus. The virus was descended from H2N2 through antigenic shift, a genetic process in which genes from multiple subtypes are reassorted to form a new virus.

<span class="mw-page-title-main">Flu season</span> Recurring periods of influenza

Flu season is an annually recurring time period characterized by the prevalence of an outbreak of influenza (flu). The season occurs during the cold half of the year in each hemisphere. It takes approximately two days to show symptoms. Influenza activity can sometimes be predicted and even tracked geographically. While the beginning of major flu activity in each season varies by location, in any specific location these minor epidemics usually take about three weeks to reach its pinnacle, and another three weeks to significantly diminish.

<span class="mw-page-title-main">Influenza pandemic</span> Pandemic involving influenza

An influenza pandemic is an epidemic of an influenza virus that spreads across a large region and infects a large proportion of the population. There have been six major influenza epidemics in the last 140 years, with the 1918 flu pandemic being the most severe; this is estimated to have been responsible for the deaths of 50–100 million people. The most recent, the 2009 swine flu pandemic, resulted in under 300,000 deaths and is considered relatively mild. These pandemics occur irregularly.

In epidemiology, case fatality rate (CFR) – or sometimes more accurately case-fatality risk – is the proportion of people diagnosed with a certain disease, who end up dying of it. Unlike a disease's mortality rate, the CFR does not take into account the time period between disease onset and death. A CFR is generally expressed as a percentage. It represents a measure of disease lethality and may change with different treatments. CFRs are most often used for with discrete, limited-time courses, such as acute infections.

<span class="mw-page-title-main">Social distancing</span> Infection control technique by keeping a distance from each other

In public health, social distancing, also called physical distancing, is a set of non-pharmaceutical interventions or measures intended to prevent the spread of a contagious disease by maintaining a physical distance between people and reducing the number of times people come into close contact with each other. It usually involves keeping a certain distance from others and avoiding gathering together in large groups.

During the 1972–1973 flu season in the Northern Hemisphere, a new variant of influenza, dubbed the 'London flu' by the press in the United States, was responsible for epidemics in many countries. 'London flu' was caused by a variant of influenza A/H3N2 that was first isolated in India in mid-1971 but only identified as a distinct strain in England in January, 1972.

<span class="mw-page-title-main">1889–1890 pandemic</span> Global pandemic

The 1889–1890 pandemic, often referred to as the "Asiatic flu" or "Russian flu", was a worldwide respiratory viral pandemic. It was the last great pandemic of the 19th century, and is among the deadliest pandemics in history. The pandemic killed about 1 million people out of a world population of about 1.5 billion. The most reported effects of the pandemic took place from October 1889 to December 1890, with recurrences in March to June 1891, November 1891 to June 1892, the northern winter of 1893–1894, and early 1895.

The Human Mortality Database (HMD) is a joint initiative of the Department of Demographics at the University of California, Berkeley in the United States and the Max Planck Institute for Demographic Research in Rostock, Germany that provides detailed mortality and population data to researchers, students, journalists, policy analysts, and others interested in the history of human longevity. The key people involved are John R. Wilmoth (Director) from the University of California, Berkeley, Vladimir Shkolnikov (Co-Director) from Max Planck Institute for Demographic Research, and Magali Barbieri from the University of California, Berkeley, and INED, Paris.

<span class="mw-page-title-main">COVID-19 pandemic</span> Pandemic caused by SARS-CoV-2

The COVID-19 pandemic, also known as the coronavirus pandemic, is a global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The novel virus was first identified in an outbreak in the Chinese city of Wuhan in December 2019. Attempts to contain it there failed, allowing the virus to spread to other areas of Asia and later worldwide in 2020. The World Health Organization (WHO) declared the outbreak a public health emergency of international concern (PHEIC) on 30 January 2020. The WHO ended its PHEIC declaration on 5 May 2023. As of 18 September 2023, the pandemic had caused 770,562,703 cases and 6,957,203 confirmed deaths, ranking it fifth in the deadliest epidemics and pandemics in history.

<span class="mw-page-title-main">COVID-19 pandemic in Sweden</span> Ongoing COVID-19 viral pandemic in Sweden

The COVID-19 pandemic in Sweden was a part of the pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2. As of 22 March 2023, there have been 2,701,192 confirmed cumulative cases and 23,851 deaths with confirmed COVID-19 in Sweden. Sweden ranks 57th in per capita deaths worldwide, and out of 47 European countries, Sweden places 30th. A 2022 estimate of excess mortality during the pandemic using IHME COVID model estimated 18,300 excess deaths during 2020-2021 The Economist model value estimated 13,670 excess deaths between 16th 2020-Mar 6th 2022.

<span class="mw-page-title-main">COVID-19 pandemic deaths</span> Human mortality as a result of coronavirus disease 2019 (COVID-19)

This article contains the monthly cumulative number of deaths from the pandemic of coronavirus disease 2019 (COVID-19) reported by each country, territory, and subnational area to the World Health Organization (WHO) and published in WHO reports, tables, and spreadsheets. There are also maps and timeline graphs of daily and weekly deaths worldwide.

<span class="mw-page-title-main">1957–1958 influenza pandemic</span> Pandemic of influenza virus (H2N2)

The 1957–1958 Asian flu pandemic was a global pandemic of influenza A virus subtype H2N2 that originated in Guizhou in Southern China. The number of excess deaths caused by the pandemic is estimated to be 1–4 million around the world, making it one of the deadliest pandemics in history. A decade later, a reassorted viral strain H3N2 further caused the Hong Kong flu pandemic (1968–1969).

The Pandemic Severity Assessment Framework (PSAF) is an evaluation framework published by the Centers for Disease Control and Prevention in 2016 which uses quadrants to evaluate both the transmissibility and clinical severity of an influenza pandemic and to combine these into an overall impact estimate. Clinical severity is calculated via multiple measures including case fatality rate, case-hospitalization ratios, and deaths-hospitalizations ratios, while viral transmissibility is measured via available data among secondary household attack rates, school attack rates, workplace attack rates, community attack rates, rates of emergency department and outpatient visits for influenza-like illness.

<span class="mw-page-title-main">Impact of the COVID-19 pandemic on other health issues</span> Health consequences of outbreak beyond the COVID-19 disease itself

The COVID-19 pandemic has had many impacts on global health beyond those caused by the COVID-19 disease itself. It has led to a reduction in hospital visits for other reasons. There have been 38 per cent fewer hospital visits for heart attack symptoms in the United States and 40 per cent fewer in Spain. The head of cardiology at the University of Arizona said, "My worry is some of these people are dying at home because they're too scared to go to the hospital." There is also concern that people with strokes and appendicitis are not seeking timely treatment. Shortages of medical supplies have impacted people with various conditions.

<span class="mw-page-title-main">COVID-19 pandemic death rates by country</span> Pandemic death rate

This article contains the current number of confirmed COVID-19 deaths per population by country. It also has cumulative death totals by country. For these numbers over time see the tables, graphs, and maps at COVID-19 pandemic deaths and COVID-19 pandemic by country and territory.

This article presents official statistics gathered during the COVID-19 pandemic in the United Kingdom.

<span class="mw-page-title-main">Undercounting of COVID-19 pandemic deaths by country</span>

Undercounting of COVID-19 pandemic deaths has been witnessed around the world. Global mortality excess estimates by the World Health Organization are significantly different from official figures, pointing to undercounting– "while 1,813,188 COVID-19 deaths were reported in 2020... WHO estimates suggest an excess mortality of at least 3,000,000." The global average for underreporting COVID-19 deaths in cities is 30%. The aim of arriving at a truer death count is ultimately linked to improving national and international abilities and responses to fighting the virus. Undercounting can cause a number of problems such as delay in vaccines to priority populations.

<span class="mw-page-title-main">Endemic COVID-19</span> Theoretical future stage of COVID-19

COVID-19 is predicted to become an endemic disease by many experts. The observed behavior of SARS-CoV-2, the virus that causes COVID-19, suggests it is unlikely it will die out, and the lack of a COVID-19 vaccine that provides long-lasting immunity against infection means it cannot immediately be eradicated; thus, a future transition to an endemic phase appears probable. In an endemic phase, people would continue to become infected and ill, but in relatively stable numbers. Precisely what would constitute an endemic phase is contested.

References

  1. Islam, Nazrul; Shkolnikov, Vladimir M; Acosta, Rolando J; Klimkin, Ilya; Kawachi, Ichiro; Irizarry, Rafael A; Alicandro, Gianfranco; Khunti, Kamlesh; Yates, Tom; Jdanov, Dmitri A; White, Martin (2021). "Excess deaths associated with covid-19 pandemic in 2020: age and sex disaggregated time series analysis in 29 high income countries". BMJ. 373: n1137. doi:10.1136/bmj.n1137. ISSN   1756-1833. PMC   8132017 . PMID   34011491.
  2. Beaney, Thomas; Clarke, Jonathan M; Jain, Vageesh; Golestaneh, Amelia Kataria; Lyons, Gemma; Salman, David; Majeed, Azeem (2020). "Excess mortality: the gold standard in measuring the impact of COVID-19 worldwide?". Journal of the Royal Society of Medicine. 113 (9): 329–334. doi:10.1177/0141076820956802. ISSN   0141-0768. PMC   7488823 . PMID   32910871.
  3. Huynen, M.M.; Martens, P.; Schram, D.; Weijenberg, M.P.; Kunst, A.E. (May 2001). "The Impact of Heat Waves and Cold Spells on Mortality Rates in the Dutch Population". Environmental Health Perspectives. 109 (5): 463–470. doi:10.1289/ehp.01109463. PMC   1240305 . PMID   11401757.
  4. "Weekly deaths – special data collection". ec.europa.eu. Eurostat. Archived from the original on 2019-07-24. Retrieved 2023-01-16.
  5. "Weekly deaths – special data collection (demomwk)". Eurostat. 2020. Archived from the original on 20 October 2020. Retrieved 14 October 2020.
  6. Dushoff, Jonathan; Plotkin, Joshua B.; Viboud, Cecile; Earn, David J. D.; Simonsen, Lone (2006-01-15). "Mortality due to Influenza in the United States – An Annualized Regression Approach Using Multiple-Cause Mortality Data". American Journal of Epidemiology. 163 (2): 181–187. doi: 10.1093/aje/kwj024 . ISSN   0002-9262. PMID   16319291. Archived from the original on 2022-10-27. Retrieved 2020-05-17.