List of unsolved problems in chemistry

Last updated

This is a list of unsolved problems in chemistry . Problems in chemistry are considered unsolved when an expert in the field considers it unsolved or when several experts in the field disagree about a solution to a problem.

Contents

Physical chemistry problems

Organic chemistry problems

Inorganic chemistry problems

Biochemistry problems

See also

References

  1. Philip Ball (November 2010). "Would element 137 really spell the end of the periodic table? Philip Ball examines the evidence". Chemistry World . Royal Society of Chemistry.
  2. Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean, eds. (2006). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer. ISBN   978-1-4020-3555-5.
  3. Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. (2012). "A Critical Review of Li–Air Batteries". Journal of the Electrochemical Society. 159 (2): R1. doi: 10.1149/2.086202jes .
  4. 1 2 "So much more to know". Science. 309 (5731): 78–102. July 2005. doi: 10.1126/science.309.5731.78b . PMID   15994524.
  5. Narayan, Sridhar; Muldoon, John; Finn, M. G.; Fokin, Valery V.; Kolb, Hartmuth C.; Sharpless, K. Barry (2005). ""On Water": Unique Reactivity of Organic Compounds in Aqueous Suspension". Angewandte Chemie International Edition. 44 (21): 3275–3279. doi: 10.1002/anie.200462883 . PMID   15844112.
  6. Ussing R, Singleton A (February 2005). "Isotope effects, dynamics, and the mechanism of solvolysis of aryldiazonium cations in water". Journal of the American Chemical Society. 127 (9): 2888–2889. Bibcode:2005JAChS.127.2888U. doi: 10.1021/ja043918p . PMID   15740124.
  7. Lowe, Derek (24 Aug 2017). "Electrochemistry For All". In the Pipeline. American Association for the Advancement of Science . Retrieved 23 August 2023.
  8. Miles, Ned Carter (2023-08-05). "'Endless possibilities': the chemists changing molecules atom by atom". The Observer. ISSN   0029-7712 . Retrieved 2023-08-24.
  9. Potter, Brian. "The Story of Titanium". Construction Physics. Retrieved 2023-08-24. In the 1950s, it was hoped/assumed that a better process for producing titanium sponge would come along to replace the Kroll process, which is a laborious and energy-intensive batch process that must be done in an inert atmosphere. But such a process has never materialized...likewise, turning titanium sponge into metal is an energy and capital-intensive process [that] has also changed little since the 1950s.
  10. Lewars, Errol G. (2008). Modeling Marvels: Computational Anticipation of Novel molecules. Springer Science+Business Media. pp. 141–63. doi:10.1007/978-1-4020-6973-4. ISBN   978-1-4020-6972-7.
  11. Sanz-Pérez, Eloy S.; Murdock, Christopher R.; Didas, Stephanie A.; Jones, Christopher W. (12 October 2016). "Direct Capture of carbon dioxide from Ambient Air". Chemical Reviews. 116 (19): 11840–11876. doi: 10.1021/acs.chemrev.6b00173 . PMID   27560307.
  12. Styring, Stenbjörn (21 December 2011). "Artificial photosynthesis for solar fuels". Faraday Discussions. 155 (Advance Article): 357–376. Bibcode:2012FaDi..155..357S. doi:10.1039/C1FD00113B. PMID   22470985.
  13. Hsieh M, Brenowitz M (August 1997). "Comparison of the DNA association kinetics of the Lac repressor tetramer, its dimeric mutant LacIadi, and the native dimeric Gal repressor". J. Biol. Chem. 272 (35): 22092–6. doi: 10.1074/jbc.272.35.22092 . PMID   9268351.
  14. King, Jonathan (2007). "MIT OpenCourseWare - 7.88J / 5.48J / 7.24J / 10.543J Protein Folding Problem, Fall 2007 Lecture Notes - 1". MIT OpenCourseWare . Archived from the original on September 28, 2013. Retrieved June 22, 2013.
  15. Dill KA; et al. (June 2008). "The Protein Folding Problem". Annu Rev Biophys. 37: 289–316. doi:10.1146/annurev.biophys.37.092707.153558. PMC   2443096 . PMID   18573083.
  16. Callaway, Ewen (2020-11-30). "'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures" . Nature. 588 (7837): 203–204. Bibcode:2020Natur.588..203C. doi:10.1038/d41586-020-03348-4. PMID   33257889. S2CID   227243204.
  17. "Principles for designing ideal protein structures. | the Baker Laboratory". Archived from the original on 2013-04-01. Retrieved 2012-12-19.
  18. Peralta-Yahya, Pamela P.; Zhang, Fuzhong; Del Cardayre, Stephen B.; Keasling, Jay D. (2012). "Microbial engineering for the production of advanced biofuels". Nature. 488 (7411): 320–328. Bibcode:2012Natur.488..320P. doi:10.1038/nature11478. PMID   22895337. S2CID   4423203.