Artificial enzyme

Last updated
Schematic drawing of artificial phosphorylase Artificial enzyme.jpg
Schematic drawing of artificial phosphorylase

An artificial enzyme is a synthetic organic molecule or ion that recreates one or more functions of a natural enzyme. These molecules aim to achieve catalysis with rates and selectivity comparable to those of naturally occurring enzymes. [1] [2]

Contents

History

Natural enzymes catalyze chemical reactions with high selectivity and efficiency. Catalysis occurs in the enzyme's active site, where substrates bind near functional groups, enabling proximity effects. Artificial enzymes mimic this by combining substrate-binding sites (e.g., cyclodextrins, crown ethers, or calixarenes) with catalytic groups in small molecules. [1] [2]

Advances include artificial enzymes based on amino acids or peptides, such as scaffolded histidine residues mimicking metalloproteins like hemocyanin, tyrosinase, and catechol oxidase. [3] Computational design using tools like Rosetta has enabled de novo creation of artificial enzymes. [4] In 2014, enzymes were created from non-natural molecules. [5] A 2016 book chapter discussed future directions in artificial enzymes. [6]

Nanozymes

Nanozymes are nanomaterials exhibiting enzyme-like properties, first coined in 2004. [7] They have applications in biosensing, bioimaging, tumor therapy, and anti-biofouling. [8] [9] Unlike natural enzymes, nanozymes offer stability, multifunctionality, and scalability. [10]

Development and Key Milestones

Early discoveries in the 1990s included fullerene derivatives mimicking superoxide dismutase (SOD). [11] The 2000s saw the term "nanozyme" formalized and applications expand, such as nanoceria preventing retinal degeneration [12] and peroxidase-like activity in ferromagnetic nanoparticles for immunoassays. [13]

The 2010s brought numerous reviews and applications, including colorimetric assays, [14] tumor visualization, [15] and anti-biofouling. [16] Key books and reviews emerged, summarizing progress. [17] [8]

In the 2020s, nanozymes advanced in therapeutic applications, such as single-atom nanozymes for sepsis [18] and tumor therapy. [19] Strategies like machine learning aided discovery, [20] and applications in treating conditions like Parkinson's disease and inflammatory bowel disease were reported. [21] [22] Nanozymes were recognized as one of IUPAC's Top Ten Emerging Technologies in Chemistry in 2022. [23]

See also

References

  1. 1 2 Breslow, Ronald (2006). Artificial Enzymes. John Wiley & Sons. ISBN   978-3-527-60680-1.
  2. 1 2 Kirby, Anthony John; Hollfelder, Florian (2009). From Enzyme Models to Model Enzymes. Royal Society of Chemistry. ISBN   978-0-85404-175-6.
  3. Albada, H. Bauke; Soulimani, Fouad; Weckhuysen, Bert M.; Liskamp, Rob M. J. (2007). "Scaffolded amino acids as a close structural mimic of type-3 copper binding sites". Chemical Communications (46): 4895–7. doi:10.1039/b709400k. PMID   18361361.
  4. Röthlisberger, Daniela; Khersonsky, Olga; Wollacott, Andrew M.; Jiang, Lin; DeChancie, Jason; Betker, Jamie; Gallaher, Jasmine L.; Althoff, Eric A.; Zanghellini, Alexandre; Dym, Orly; Albeck, Shira; Houk, Kendall N.; Tawfik, Dan S.; Baker, David (19 March 2008). "Kemp elimination catalysts by computational enzyme design". Nature. 453 (7192): 190–195. Bibcode:2008Natur.453..190R. doi: 10.1038/nature06879 . PMID   18354394.
  5. "World's first artificial enzymes created using synthetic biology". University of Cambridge. 1 December 2014. Retrieved 14 December 2016.
  6. Cheng, Hanjun; Wang, Xiaoyu; Wei, Hui (2016). "Artificial Enzymes: The Next Wave". In Wang, Zerong (ed.). Encyclopedia of Physical Organic Chemistry. American Cancer Society. doi:10.1002/9781118468586. ISBN   978-1-118-47045-9.
  7. Manea, Flavio; Houillon, Florence Bodar; Pasquato, Lucia; Scrimin, Paolo (19 November 2004). "Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts". Angewandte Chemie International Edition. 43 (45): 6165–6169. doi:10.1002/anie.200460649. PMID   15549744.
  8. 1 2 Wu, Jiangjiexing; Wang, Xiaoyu; Wang, Quan; Lou, Zhangping; Li, Sirong; Zhu, Yunyao; Qin, Li; Wei, Hui (2019). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)". Chemical Society Reviews. 48 (4): 1004–1076. doi:10.1039/c8cs00457a. PMID   30534770. S2CID   54474779.
  9. Wang, Xiaoyu; Hu, Yihui; Wei, Hui (2016). "Nanozymes in bionanotechnology: from sensing to therapeutics and beyond". Inorganic Chemistry Frontiers. 3 (1): 41–60. doi:10.1039/c5qi00240k. S2CID   138012998.
  10. Wei, Hui; Wang, Erkang (2013). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes". Chemical Society Reviews. 42 (14): 6060–93. doi:10.1039/c3cs35486e. PMID   23740388. S2CID   39693417.
  11. Dugan, Laura L.; Gabrielsen, Joseph K.; Yu, Shan P.; Lin, Tien-Sung; Choi, Dennis W. (April 1996). "Buckminsterfullerenol Free Radical Scavengers Reduce Excitotoxic and Apoptotic Death of Cultured Cortical Neurons". Neurobiology of Disease. 3 (2): 129–135. doi:10.1006/nbdi.1996.0013. PMID   9173920. S2CID   26139075.
  12. Chen, Junping; Patil, Swanand; Seal, Sudipta; McGinnis, James F. (29 October 2006). "Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides". Nature Nanotechnology. 1 (2): 142–150. Bibcode:2006NatNa...1..142C. doi:10.1038/nnano.2006.91. PMID   18654167. S2CID   3093558.
  13. Gao, Lizeng; Zhuang, Jie; Nie, Leng; Zhang, Jinbin; Zhang, Yu; Gu, Ning; Wang, Taihong; Feng, Jing; Yang, Dongling; Perrett, Sarah; Yan, Xiyun (26 August 2007). "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles". Nature Nanotechnology. 2 (9): 577–583. Bibcode:2007NatNa...2..577G. doi:10.1038/nnano.2007.260. PMID   18654371. S2CID   10602418.
  14. Wei, Hui; Wang, Erkang (March 2008). "Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection". Analytical Chemistry. 80 (6): 2250–2254. doi:10.1021/ac702203f. PMID   18290671.
  15. Fan, Kelong; Cao, Changqian; Pan, Yongxin; Lu, Di; Yang, Dongling; Feng, Jing; Song, Lina; Liang, Minmin; Yan, Xiyun (17 June 2012). "Magnetoferritin nanoparticles for targeting and visualizing tumour tissues". Nature Nanotechnology. 7 (7): 459–464. Bibcode:2012NatNa...7..459F. doi:10.1038/nnano.2012.90. PMID   22706697. S2CID   19859273.
  16. Natalio, Filipe; André, Rute; Hartog, Aloysius F.; Stoll, Brigitte; Jochum, Klaus Peter; Wever, Ron; Tremel, Wolfgang (1 July 2012). "Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation". Nature Nanotechnology. 7 (8): 530–535. Bibcode:2012NatNa...7..530N. doi:10.1038/nnano.2012.91. PMID   22751222.
  17. Wang, Xiaoyu; Guo, Wenjing; Hu, Yihui; Wu, Jiangjiexing; Wei, Hui (2016). Nanozymes: Next Wave of Artificial Enzymes. Springer. ISBN   978-3-662-53068-9.
  18. Cao, Fangfang; Zhang, Lu; You, Yawen; Zheng, Lirong; Ren, Jinsong; Qu, Xiaogang (12 February 2020). "An Enzyme-Mimicking Single-Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management". Angewandte Chemie. 132 (13): 5146–5153. Bibcode:2020AngCh.132.5146C. doi:10.1002/ange.201912182. S2CID   214232731.
  19. Wang, Dongdong; Wu, Huihui; Phua, Soo Zeng Fiona; Yang, Guangbao; Qi Lim, Wei; Gu, Long; Qian, Cheng; Wang, Haibao; Guo, Zhen; Chen, Hongzhong; Zhao, Yanli (17 January 2020). "Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor". Nature Communications. 11 (1): 357. Bibcode:2020NatCo..11..357W. doi:10.1038/s41467-019-14199-7. PMC   6969186 . PMID   31953423.
  20. Wei, Yonghua; Wu, Jin; Wu, Yixuan; Liu, Hongjiang; Meng, Fanqiang; Liu, Qiqi; Midgley, Adam C.; Zhang, Xiangyun; Qi, Tianyi; Kang, Helong; Chen, Rui; Kong, Deling; Zhuang, Jie; Yan, Xiyun; Huang, Xinglu (2022). "Prediction and Design of Nanozymes using Explainable Machine Learning". Advanced Materials. 34 (27) e2201736. Bibcode:2022AdM....3401736W. doi:10.1002/adma.202201736. PMID   35487518. S2CID   248451764.
  21. Singh, Namrata; Savanur, Mohammed Azharuddin; Srivastava, Shubhi; D'Silva, Patrick; Mugesh, Govindasamy (6 November 2017). "A Redox Modulatory Mn3O4 Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson's Disease Model". Angewandte Chemie International Edition. 56 (45): 14267–14271. doi:10.1002/anie.201708573. PMID   28922532.
  22. Zhao, Shuai; Duan, Hongxia; Yang, Yili; Yan, Xiyun; Fan, Kelong (November 2019). "Fenozyme Protects the Integrity of the Blood–Brain Barrier against Experimental Cerebral Malaria". Nano Letters. 19 (12): 8887–8895. Bibcode:2019NanoL..19.8887Z. doi:10.1021/acs.nanolett.9b03774. PMID   31671939. S2CID   207815491.
  23. Meyers, Fabienne (October 17, 2022). "IUPAC Announces the 2022 Top Ten Emerging Technologies in Chemistry". IUPAC | International Union of Pure and Applied Chemistry.