A prodrug is a pharmacologically inactive medication or compound that, after intake, is metabolized (i.e., converted within the body) into a pharmacologically active drug. [1] [2] Instead of administering a drug directly, a corresponding prodrug can be used to improve how the drug is absorbed, distributed, metabolized, and excreted (ADME). [3] [4]
Prodrugs are often designed to improve bioavailability when a drug itself is poorly absorbed from the gastrointestinal tract. [2] A prodrug may be used to improve how selectively the drug interacts with cells or processes that are not its intended target. This reduces adverse or unintended effects of a drug, especially important in treatments like chemotherapy, which can have severe unintended and undesirable side effects.
Compound that undergoes biotransformation before exhibiting pharmacological effects.
Note 1: Modified from ref. [5]
Note 2: Prodrugs can thus be viewed as drugs containing specialized nontoxic protective groups used in a transient manner to alter or to eliminate undesirable properties in the parent molecule. [6]
Many herbal extracts historically used in medicine contain glycosides (sugar derivatives) of the active agent, which are hydrolyzed in the intestines to release the active and more bioavailable aglycone. For example, salicin is a β-D-glucopyranoside that is cleaved by esterases to release salicylic acid. Aspirin, acetylsalicylic acid, first made by Felix Hoffmann at Bayer in 1897, is a synthetic prodrug of salicylic acid. [7] [8] However, in other cases, such as codeine and morphine, the administered drug is enzymatically activated to form sugar derivatives (morphine-glucuronides) that are more active than the parent compound. [2]
The first synthetic antimicrobial drug, arsphenamine, discovered in 1909 by Sahachiro Hata in the laboratory of Paul Ehrlich, is not toxic to bacteria until it has been converted to an active form by the body. Likewise, prontosil, the first sulfa drug (discovered by Gerhard Domagk in 1932), must be cleaved in the body to release the active molecule, sulfanilamide. Since that time, many other examples have been identified.
Terfenadine, the first non-sedating antihistamine, had to be withdrawn from the market because of the small risk of a serious side effect. However, terfenadine was discovered to be the prodrug of the active molecule, fexofenadine, which does not carry the same risks as the parent compound. Therefore, fexofenadine could be placed on the market as a safe replacement for the original drug.
Loratadine, another non-sedating antihistamine, is the prodrug of desloratadine, which is largely responsible for the antihistaminergic effects of the parent compound. However, in this case the parent compound does not have the side effects associated with terfenadine, and so both loratadine and its active metabolite, desloratadine, are currently marketed. [9]
Approximately 10% of all marketed drugs worldwide can be considered prodrugs. Since 2008, at least 30 prodrugs have been approved by the FDA. [1] Seven prodrugs were approved in 2015 and six in 2017. Examples of recently approved prodrugs are such as dabigatran etexilate (approved in 2010), gabapentin enacarbil (2011), sofosbuvir (2013), tedizolid phosphate (2014), isavuconazonium (2015), aripiprazole lauroxil (2015), selexipag (2015), latanoprostene bunod (2017), benzhydrocodone (2018), tozinameran (2020) and serdexmethylphenidate (2021).
Prodrugs can be classified into two major types, [10] based on how the body converts the prodrug into the final active drug form:
Both major types can be further categorized into subtypes, based on factors such as (Type I) whether the intracellular bioactivation location is also the site of therapeutic action, or (Type 2) whether or not bioactivation occurs in the gastrointestinal fluids or in the circulation system.
Type | Bioactivation site | Subtype | Tissue location of bioactivation | Examples |
---|---|---|---|---|
Type I | Intracellular | Type IA | Therapeutic target tissues/cells | Aciclovir, fluorouracil, cyclophosphamide, diethylstilbestrol diphosphate, L-DOPA, mercaptopurine, mitomycin, zidovudine |
Type IB | Metabolic tissues (liver, GI mucosal cell, lung etc.) | Carbamazepine, captopril, carisoprodol, heroin, molsidomine, leflunomide, paliperidone, phenacetin, primidone, psilocybin, sulindac, fursultiamine | ||
Type II | Extracellular | Type IIA | GI fluids | Loperamide oxide, oxyphenisatin, sulfasalazine |
Type IIB | Systemic circulation and other extracellular fluid compartments | Acetylsalicylate, bacampicillin, bambuterol, chloramphenicol succinate, dipivefrin, fosphenytoin, lisdexamfetamine, pralidoxime | ||
Type IIC | Therapeutic target tissues/cells | ADEPTs, GDEPTs, VDEPTs |
Type IA prodrugs include many antimicrobial and chemotherapy agents (e.g., 5-flurouracil). Type IB agents rely on metabolic enzymes, especially in hepatic cells, to bioactivate the prodrugs intracellularly to active drugs. Type II prodrugs are bioactivated extracellularly, either in the milieu of GI fluids (Type IIA), within the systemic circulation and/or other extracellular fluid compartments (Type IIB), or near therapeutic target tissues/cells (Type IIC), relying on common enzymes such as esterases and phosphatases or target directed enzymes. Importantly, prodrugs can belong to multiple subtypes (i.e., Mixed-Type). A Mixed-Type prodrug is one that is bioactivated at multiple sites, either in parallel or sequential steps. For example, a prodrug, which is bioactivated concurrently in both target cells and metabolic tissues, could be designated as a "Type IA/IB" prodrug (e.g., HMG Co-A reductase inhibitors and some chemotherapy agents; note the symbol " / " applied here). When a prodrug is bioactivated sequentially, for example initially in GI fluids then systemically within the target cells, it is designated as a "Type IIA-IA" prodrug (e.g., tenofovir disoproxil; note the symbol " - " applied here). Many antibody- virus- and gene-directed enzyme prodrug therapies (ADEPTs, VDEPTs, GDEPTs) and proposed nanoparticle- or nanocarrier-linked drugs can understandably be Sequential Mixed-Type prodrugs. To differentiate these two Subtypes, the symbol dash " - " is used to designate and to indicate sequential steps of bioactivation, and is meant to distinguish from the symbol slash " / " used for the Parallel Mixed-Type prodrugs. [11] [12]
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related proteins that are cell surface receptors that detect molecules outside the cell and activate cellular responses. They are coupled with G proteins. They pass through the cell membrane seven times in the form of six loops of amino acid residues, which is why they are sometimes referred to as seven-transmembrane receptors. Ligands can bind either to the extracellular N-terminus and loops or to the binding site within transmembrane helices. They are all activated by agonists, although a spontaneous auto-activation of an empty receptor has also been observed.
H1 antagonists, also called H1 blockers, are a class of medications that block the action of histamine at the H1 receptor, helping to relieve allergic reactions. Agents where the main therapeutic effect is mediated by negative modulation of histamine receptors are termed antihistamines; other agents may have antihistaminergic action but are not true antihistamines.
Loratadine, sold under the brand name Claritin among others, is a medication used to treat allergies. This includes allergic rhinitis and hives. It is also available in drug combinations such as loratadine/pseudoephedrine, in which it is combined with pseudoephedrine, a nasal decongestant. It is taken orally.
In molecular biology and pharmacology, a small molecule or micromolecule is a low molecular weight organic compound that may regulate a biological process, with a size on the order of 1 nm. Many drugs are small molecules; the terms are equivalent in the literature. Larger structures such as nucleic acids and proteins, and many polysaccharides are not small molecules, although their constituent monomers are often considered small molecules. Small molecules may be used as research tools to probe biological function as well as leads in the development of new therapeutic agents. Some can inhibit a specific function of a protein or disrupt protein–protein interactions.
ADME is the four-letter abbreviation (acronym) for absorption, distribution, metabolism, and excretion, and is mainly used in fields such as pharmacokinetics and pharmacology. The four letter stands for descriptors quantifying how a given drug interacts within body over time. The term ADME was first introduced in 1960s, and has become a standard term widely used in scientific literature, teaching, drug regulations, and clinical practice.
Fexofenadine, sold under the brand name Allegra among others, is an antihistamine pharmaceutical drug used in the treatment of allergy symptoms, such as hay fever and urticaria.
Cytochrome P450 3A4 is an important enzyme in the body, mainly found in the liver and in the intestine, which in humans is encoded by CYP3A4 gene. It oxidizes small foreign organic molecules (xenobiotics), such as toxins or drugs, so that they can be removed from the body. It is highly homologous to CYP3A5, another important CYP3A enzyme.
Drug metabolism is the metabolic breakdown of drugs by living organisms, usually through specialized enzymatic systems. More generally, xenobiotic metabolism is the set of metabolic pathways that modify the chemical structure of xenobiotics, which are compounds foreign to an organism's normal biochemistry, such as any drug or poison. These pathways are a form of biotransformation present in all major groups of organisms and are considered to be of ancient origin. These reactions often act to detoxify poisonous compounds. The study of drug metabolism is called pharmacokinetics.
Toxication, toxification or toxicity exaltation is the conversion of a chemical compound into a more toxic form in living organisms or in substrates such as soil or water. The conversion can be caused by enzymatic metabolism in the organisms, as well as by abiotic chemical reactions. While the parent drug are usually less active, both the parent drug and its metabolite can be chemically active and cause toxicity, leading to mutagenesis, teratogenesis, and carcinogenesis. Different classes of enzymes, such as P450-monooxygenases, epoxide hydrolase, or acetyltransferases can catalyze the process in the cell, mostly in the liver.
Terfenadine is an antihistamine formerly used for the treatment of allergic conditions. It was brought to market by Hoechst Marion Roussel and was marketed under various brand names, including Seldane in the United States, Triludan in the United Kingdom, and Teldane in Australia. It was superseded by fexofenadine in the 1990s due to the risk of a particular type of disruption of the electrical rhythms of the heart and has been withdrawn from markets worldwide.
Activation, in chemistry and biology, is the process whereby something is prepared or excited for a subsequent reaction.
Biguanide is the organic compound with the formula HN(C(NH)NH2)2. It is a colorless solid that dissolves in water to give highly basic solution. These solutions slowly hydrolyse to ammonia and urea.
The bafilomycins are a family of macrolide antibiotics produced from a variety of Streptomycetes. Their chemical structure is defined by a 16-membered lactone ring scaffold. Bafilomycins exhibit a wide range of biological activity, including anti-tumor, anti-parasitic, immunosuppressant and anti-fungal activity. The most used bafilomycin is bafilomycin A1, a potent inhibitor of cellular autophagy. Bafilomycins have also been found to act as ionophores, transporting potassium K+ across biological membranes and leading to mitochondrial damage and cell death.
Antihistamines are drugs which treat allergic rhinitis, common cold, influenza, and other allergies. Typically, people take antihistamines as an inexpensive, generic drug that can be bought without a prescription and provides relief from nasal congestion, sneezing, or hives caused by pollen, dust mites, or animal allergy with few side effects. Antihistamines are usually for short-term treatment. Chronic allergies increase the risk of health problems which antihistamines might not treat, including asthma, sinusitis, and lower respiratory tract infection. Consultation of a medical professional is recommended for those who intend to take antihistamines for longer-term use.
Cytochrome P450 4F2 is a protein that in humans is encoded by the CYP4F2 gene. This protein is an enzyme, a type of protein that catalyzes chemical reactions inside cells. This specific enzyme is part of the superfamily of cytochrome P450 (CYP) enzymes, and the encoding gene is part of a cluster of cytochrome P450 genes located on chromosome 19.
The angiotensin receptor blockers (ARBs), also called angiotensin (AT1) receptor antagonists or sartans, are a group of antihypertensive drugs that act by blocking the effects of the hormone angiotensin II in the body, thereby lowering blood pressure. Their structure is similar to Ang II and they bind to Ang II receptors as inhibitors, e.g., [T24 from Rhys Healthcare].
Cephalosporins are a broad class of bactericidal antibiotics that include the β-lactam ring and share a structural similarity and mechanism of action with other β-lactam antibiotics. The cephalosporins have the ability to kill bacteria by inhibiting essential steps in the bacterial cell wall synthesis which in the end results in osmotic lysis and death of the bacterial cell. Cephalosporins are widely used antibiotics because of their clinical efficiency and desirable safety profile.
Directed enzyme prodrug therapy (DEPT) uses enzymes artificially introduced into the body to convert prodrugs, which have no or poor biologically activity, to the active form in the desired location within the body. Many chemotherapy drugs for cancer lack tumour specificity and the doses required to reach therapeutic levels in the tumour are often toxic to other tissues. DEPT strategies are an experimental method of reducing the systemic toxicity of a drug, by achieving high levels of the active drug only at the desired site. This article describes the variations of DEPT technology.
Competitive inhibition is interruption of a chemical pathway owing to one chemical substance inhibiting the effect of another by competing with it for binding or bonding. Any metabolic or chemical messenger system can potentially be affected by this principle, but several classes of competitive inhibition are especially important in biochemistry and medicine, including the competitive form of enzyme inhibition, the competitive form of receptor antagonism, the competitive form of antimetabolite activity, and the competitive form of poisoning.
Fluorodeoxyuridylate, also known as FdUMP, 5-fluoro-2'-deoxyuridylate, and 5-fluoro-2'-deoxyuridine 5'-monophosphate, is a molecule formed in vivo from 5-fluorouracil and 5-fluorodeoxyuridine.