Food engineering

Last updated
Bread factory in Germany Factory Automation Robotics Palettizing Bread.jpg
Bread factory in Germany

Food engineering is a scientific, academic, and professional field that interprets and applies principles of engineering, science, and mathematics to food manufacturing and operations, including the processing, production, handling, storage, conservation, control, packaging and distribution of food products. [1] [2] Given its reliance on food science and broader engineering disciplines such as electrical, mechanical, civil, chemical, industrial and agricultural engineering, food engineering is considered a multidisciplinary and narrow field. [1]

Contents

Due to the complex nature of food materials, food engineering also combines the study of more specific chemical and physical concepts such as biochemistry, microbiology, food chemistry, thermodynamics, transport phenomena, rheology, and heat transfer. [2] Food engineers apply this knowledge to the cost-effective design, production, and commercialization of sustainable, safe, nutritious, healthy, appealing, affordable and high-quality ingredients and foods, as well as to the development of food systems, machinery, and instrumentation. [3] [4]

History

Although food engineering is a relatively recent and evolving field of study, it is based on long-established concepts and activities. [1] The traditional focus of food engineering was preservation, which involved stabilizing and sterilizing foods, preventing spoilage, and preserving nutrients in food for prolonged periods of time. [5] More specific traditional activities include food dehydration and concentration, protective packaging, canning and freeze-drying . The development of food technologies were greatly influenced and urged by wars and long voyages, including space missions, where long-lasting and nutritious foods were essential for survival. [2] Other ancient activities include milling, storage, and fermentation processes. [2] Although several traditional activities remain of concern and form the basis of today’s technologies and innovations, the focus of food engineering has recently shifted to food quality, safety, taste, health and sustainability. [2] [5]

Application and practices

The following are some of the applications and practices used in food engineering to produce safe, healthy, tasty, and sustainable food:

Refrigeration and freezing

Food distribution center with refrigeration technologies Refrigeration Warehouse.jpg
Food distribution center with refrigeration technologies

The main objective of food refrigeration and/or freezing is to preserve the quality and safety of food materials. Refrigeration and freezing contribute to the preservation of perishable foods, and to the conservation some food quality factors such as visual appearance, texture, taste, flavor and nutritional content. Freezing food slows the growth of bacteria that could potentially harm consumers. [5]

Evaporation

Evaporation is used to pre-concentrate, increase the solid content, change the color, and reduce the water content of food and liquid products. [6] This process is mostly seen when processing milk, starch derivatives, coffee, fruit juices, vegetable pastes and concentrates, seasonings, sauces, sugar, and edible oil. Evaporation is also used in food dehydration processes. The purpose of dehydration is to prevent the growth of molds in food, which only build when moisture is present. [5] This process can be applied to vegetables, fruits, meats, and fish, for example. [5]

Packaging

Food packaging technologies are used to extend the shelf-life of products, to stabilize food (preserve taste, appearance, and quality), and to maintain the food clean, protected, and appealing to the consumer. This can be achieved, for example, by packaging food in cans and jars. [5] Because food production creates large amounts of waste, many companies are transitioning to eco-friendly packaging to preserve the environment and attract the attention of environmentally conscious consumers. Some types of environmentally friendly packaging include plastics made from corn or potato, bio-compostable plastic and paper products which disintegrate, and recycled content. Even though transitioning to eco-friendly packaging has positive effects on the environment, many companies are finding other benefits such as reducing excess packaging material, helping to attract and retain customers, and showing that companies care about the environment. [7]

Energy for food processing

To increase sustainability of food processing there is a need for energy efficiency and waste heat recovery. The replacement of conventional energy-intensive food processes with new technologies like thermodynamic cycles and non-thermal heating processes provide another potential to reduce energy consumption, reduce production costs, and improve the sustainability in food production. [8]

Heat transfer in food processing

Heat transfer is important in the processing of almost every commercialized food product and is important to preserve the hygienic, nutritional and sensory qualities of food. Heat transfer methods include induction, convection, and radiation.[ citation needed ] These methods are used to create variations in the physical properties of food when freezing, baking, or deep frying products, and also when applying ohmic heating or infrared radiation to food.[ citation needed ] These tools allow food engineers to innovate in the creation and transformation of food products.

Food Safety Management Systems (FSMS)

A Food Safety Management System (FSMS) is "a systematic approach to controlling food safety hazards within a business in order to ensure that the food product is safe to consume." [9] In some countries FSMS is a legal requirement, which obliges all food production businesses to use and maintain a FSMS based on the principles of Hazard Analysis Critical Control Point (HACCP). [9] HACCP is a management system that addresses food safety through the analysis and control of biological, chemical, and physical hazards in all stages of the food supply chain. [10] The ISO 22000 standard specifies the requirements for FSMS. [11]

Emerging technologies

The following technologies, which continue to evolve, have contributed to the innovation and advancement of food engineering practices:

Production of cookies with automation ProductionCookies.jpg
Production of cookies with automation

Three-dimensional printing of food

Three-dimensional (3D) printing, also known as additive manufacturing, is the process of using digital files to create three dimensional objects. In the food industry, 3D printing of food is used for the processing of food layers using computer equipment. The process of 3D printing is slow, but is improving over time with the goal of reducing costs and processing times. Some of the successful food items that have been printed through 3D technology are: chocolate, cheese, cake frosting, turkey, pizza, celery, among others. This technology is continuously improving, and has the potential of providing cost-effective, energy efficient food that meets nutritional stability, safety and variety. [12]

Biosensors

Biosensors can be used for quality control in laboratories and in different stages of food processing. Biosensor technology is one way in which farmers and food processors have adapted to the worldwide increase in demand for food, while maintaining their food production and quality high. Furthermore, since millions of people are affected by food-borne diseases caused by bacteria and viruses, biosensors are becoming an important tool to ensure the safety of food. They help track and analyze food quality during several parts of the supply chain: in food processing, shipping and commercialization. Biosensors can also help with the detection of genetically modified organisms (GMOs), to help regulate GMO products. With the advancement of technologies, like nanotechnology, the quality and uses of biosensors are constantly being improved. [12]

Milk pasteurization by microwave

When storage conditions of milk are controlled, milk tends to have a very good flavor. However, oxidized flavor is a problem that affects the taste and safety of milk in a negative way. To prevent the growth of pathogenic bacteria and extend the shelf life of milk, pasteurization processes were developed. Microwaved milk has been studied and developed to prevent oxidation compared to traditional pasteurized milk methods, and it has been concluded that milk has a better quality when it has microwaved milk pasteurization. [12]

Education and training

Students working in a food science laboratory Education and Training.jpg
Students working in a food science laboratory

In the 1950s, food engineering emerged as an academic discipline, [2] when several U.S. universities included food science and food technology in their curricula, and important works on food engineering appeared. [2] Today, educational institutions throughout the world offer bachelors, masters, and doctoral degrees in food engineering. However, due to the unique character of food engineering, its training is more often offered as a branch of broader programs on food science, food technology, biotechnology, or agricultural and chemical engineering. [13] In other cases, institutions offer food engineering education through concentrations, specializations, or minors. Food engineering candidates receive multidisciplinary training in areas like mathematics, chemistry, biochemistry, physics, microbiology, nutrition, and law.

Food engineering is still growing and developing as a field of study, and academic curricula continue to evolve. Future food engineering programs are subject to change due to the current challenges in the food industry, including bio-economics, food security, population growth, food safety, changing eating behavior, globalization, climate change, energy cost and change in value chain, fossil fuel prices, and sustainability. [13] To address these challenges, which require the development of new products, services, and processes, academic programs are incorporating innovative and practical forms of training. [13] For example, innovation laboratories, research programs, and projects with food companies and equipment manufacturers are being adopted by some universities. [1] [13] In addition, food engineering competitions and competitions from other scientific disciplines are appearing. [13]

With the growing demand for safe, sustainable, and healthy food, and for environmentally friendly processes and packaging, there is a large job market for food engineering prospective employees. Food engineers are typically employed by the food industry, academia, government agencies, research centers, consulting firms, pharmaceutical companies, healthcare firms, and entrepreneurial projects. [2] [12] Job descriptions include but are not limited to food engineer, food microbiologist, bioengineering/biotechnology, nutrition, traceability, food safety and quality management. [3]

Challenges

Sustainability

Food engineering has negative impacts on the environment such as the emission of large quantities of waste and the pollution of water and air, which must be addressed by food engineers in the future development of food production and processing operations. Scientists and engineers are experimenting in different ways to create improved processes that reduce pollution, but these must continue to be improved in order to achieve a sustainable food supply chain. Food engineers must reevaluate current practices and technologies to focus on increasing productivity and efficiency while reducing the consumption of water and energy, and decreasing the amount of waste produced. [5]

Population growth

Even though food supply expands yearly, there has also been an increase in the number of hungry people. The world population is expected to reach 9-10 billion people by 2050 and the problem of malnutrition remains a priority. [5] To achieve food security, food engineers are required to address land and water scarcity to provide enough growth and food for undernourished people. [5] In addition, food production depends on land and water supply, which are under stress as the population size increases. There is a growing pressure on land resources driven by expanding populations, leading to expansions of croplands; this usually involves the destruction of forests and exploitation of arable land. [14] Food engineers face the challenge of finding sustainable ways to produce to adapt to the growing population.

Human health

Food engineers must adapt food technologies and operations to the recent consumer trend toward the consumption of healthy and nutritious food. To supply foods with these qualities, and for the benefit of human health, food engineers must work collaboratively with professionals in other domains such as medicine, biochemistry, chemistry, and consumerism. [5] New technologies and practices must be developed to increase the production of foods that have a positive impact on human health.

See also

Related Research Articles

<span class="mw-page-title-main">Food preservation</span> Inhibition of microbial growth in food

Food preservation includes processes that make food more resistant to microorganism growth and slow the oxidation of fats. This slows down the decomposition and rancidification process. Food preservation may also include processes that inhibit visual deterioration, such as the enzymatic browning reaction in apples after they are cut during food preparation. By preserving food, food waste can be reduced, which is an important way to decrease production costs and increase the efficiency of food systems, improve food security and nutrition and contribute towards environmental sustainability. For instance, it can reduce the environmental impact of food production.

<span class="mw-page-title-main">Pasteurization</span> Process of preserving foods with heat

In the field of food processing, pasteurization is a process of food preservation in which packaged and unpacked foods are treated with mild heat, usually to less than 100 °C (212 °F), to eliminate pathogens and extend shelf life. Pasteurization either destroys or deactivates microorganisms and enzymes that contribute to food spoilage or the risk of disease, including vegetative bacteria, but most bacterial spores survive the process.

The following outline is provided as an overview of and topical guide to agriculture:

<span class="mw-page-title-main">Ultra-high-temperature processing</span> Food sterilization process

Ultra-high temperature processing (UHT), ultra-heat treatment, or ultra-pasteurization is a food processing technology that sterilizes liquid food by heating it above 140 °C (284 °F) – the temperature required to kill bacterial endospores – for two to five seconds. UHT is most commonly used in milk production, but the process is also used for fruit juices, cream, soy milk, yogurt, wine, soups, honey, and stews. UHT milk was first developed in the 1960s and became generally available for consumption in the 1970s. The heat used during the UHT process can cause Maillard browning and change the taste and smell of dairy products. An alternative process is flash pasteurization, in which the milk is heated to 72 °C (162 °F) for at least fifteen seconds.

<span class="mw-page-title-main">Hazard analysis and critical control points</span> Systematic preventive approach to food safety

Hazard analysis and critical control points, or HACCP, is a systematic preventive approach to food safety from biological, chemical, and physical hazards in production processes that can cause the finished product to be unsafe and designs measures to reduce these risks to a safe level. In this manner, HACCP attempts to avoid hazards rather than attempting to inspect finished products for the effects of those hazards. The HACCP system can be used at all stages of a food chain, from food production and preparation processes including packaging, distribution, etc. The Food and Drug Administration (FDA) and the United States Department of Agriculture (USDA) require mandatory HACCP programs for juice and meat as an effective approach to food safety and protecting public health. Meat HACCP systems are regulated by the USDA, while seafood and juice are regulated by the FDA. All other food companies in the United States that are required to register with the FDA under the Public Health Security and Bioterrorism Preparedness and Response Act of 2002, as well as firms outside the US that export food to the US, are transitioning to mandatory hazard analysis and risk-based preventive controls (HARPC) plans.

<span class="mw-page-title-main">Food processing</span> Transformation of raw ingredients into a food like product, or of food into other forms

Food processing is the transformation of agricultural products into food, or of one form of food into other forms. Food processing takes many forms, from grinding grain into raw flour, home cooking, and complex industrial methods used in the making of convenience foods. Some food processing methods play important roles in reducing food waste and improving food preservation, thus reducing the total environmental impact of agriculture and improving food security.

<span class="mw-page-title-main">Biochemical engineering</span> Manufacturing by chemical reactions of biological organisms

Biochemical engineering, also known as bioprocess engineering, is a field of study with roots stemming from chemical engineering and biological engineering. It mainly deals with the design, construction, and advancement of unit processes that involve biological organisms or organic molecules and has various applications in areas of interest such as biofuels, food, pharmaceuticals, biotechnology, and water treatment processes. The role of a biochemical engineer is to take findings developed by biologists and chemists in a laboratory and translate that to a large-scale manufacturing process.

<span class="mw-page-title-main">Freeze drying</span> Low temperature dehydration process

Freeze drying, also known as lyophilization or cryodesiccation, is a low temperature dehydration process that involves freezing the product and lowering pressure, thereby removing the ice by sublimation. This is in contrast to dehydration by most conventional methods that evaporate water using heat.

<span class="mw-page-title-main">Food industry</span> Collective term for diverse businesses that supply much of the worlds food

The food industry is a complex, global network of diverse businesses that supplies most of the food consumed by the world's population. The food industry today has become highly diversified, with manufacturing ranging from small, traditional, family-run activities that are highly labour-intensive, to large, capital-intensive and highly mechanized industrial processes. Many food industries depend almost entirely on local agriculture, animal farms, produce, and/or fishing.

<span class="mw-page-title-main">ISO 22000</span> Food safety standard

ISO 22000 is a food safety management system by the International Organization for Standardization (ISO) which is outcome focused, providing requirements for any organization in the food industry with objective to help to improve overall performance in food safety. These standards are intended to ensure safety in the global food supply chain. The standards involve the overall guidelines for food safety management and also focuses on traceability in the feed and food chain.

<span class="mw-page-title-main">Shelf-stable food</span> Foods that can be stored at room temperature

Shelf-stable food is food of a type that can be safely stored at room temperature in a sealed container. This includes foods that would normally be stored refrigerated, but which have been processed so that they can be safely stored at room or ambient temperature for a usefully long shelf life.

<span class="mw-page-title-main">Fish processing</span> Process from catching to selling fish

The term fish processing refers to the processes associated with fish and fish products between the time fish are caught or harvested, and the time the final product is delivered to the customer. Although the term refers specifically to fish, in practice it is extended to cover any aquatic organisms harvested for commercial purposes, whether caught in wild fisheries or harvested from aquaculture or fish farming.

Aseptic processing is a processing technique wherein commercially thermally sterilized liquid products are packaged into previously sterilized containers under sterile conditions to produce shelf-stable products that do not need refrigeration. Aseptic processing has almost completely replaced in-container sterilization of liquid foods, including milk, fruit juices and concentrates, cream, yogurt, salad dressing, liquid egg, and ice cream mix. There has been an increasing popularity for foods that contain small discrete particles, such as cottage cheese, baby foods, tomato products, fruit and vegetables, soups, and rice desserts.

<span class="mw-page-title-main">Fish preservation</span>

Fish preservation is the method of increasing the shelf life of fish and other fish products by applying the principles of different branches of science in order to keep the fish, after it has landed, in a condition wholesome and fit for human consumption. Ancient methods of preserving fish included drying, salting, pickling and smoking. All of these techniques are still used today but the more modern techniques of freezing and canning have taken on a large importance.

Pascalization, bridgmanization, high pressure processing (HPP) or high hydrostatic pressure (HHP) processing is a method of preserving and sterilizing food, in which a product is processed under very high pressure, leading to the inactivation of certain microorganisms and enzymes in the food. HPP has a limited effect on covalent bonds within the food product, thus maintaining both the sensory and nutritional aspects of the product. The technique was named after Blaise Pascal, a 17th century French scientist whose work included detailing the effects of pressure on fluids. During pascalization, more than 50,000 pounds per square inch may be applied for approximately fifteen minutes, leading to the inactivation of yeast, mold, vegetative bacteria, and some viruses and parasites. Pascalization is also known as bridgmanization, named for physicist Percy Williams Bridgman.

<span class="mw-page-title-main">Food spoilage</span> Often due to bacteria and fungi

Food spoilage is the process where a food product becomes unsuitable to ingest by the consumer. The cause of such a process is due to many outside factors as a side-effect of the type of product it is, as well as how the product is packaged and stored. Due to food spoilage, one-third of the world's food produced for the consumption of humans is lost every year. Bacteria and various fungi are the cause of spoilage and can create serious consequences for the consumers, but there are preventive measures that can be taken.

The Agricultural Technology Research Program (ATRP) is part of the Aerospace, Transportation and Advanced Systems Laboratory of the Georgia Tech Research Institute. It was founded in 1973 to work with Georgia agribusiness, especially the poultry industry, to develop new technologies and adapt existing ones for specialized industrial needs. The program's goal is to improve productivity, reduce costs, and enhance safety and health through technological innovations.

Mlekara Subotica was a Serbian producer of dairy products based in Subotica, Serbia.

<span class="mw-page-title-main">Cold-pressed juice</span> Juice extracted by hydraulic press

Cold-pressed juice is juice that uses a hydraulic press to extract juice from fruit and vegetables, as opposed to other methods such as centrifugal or single auger.

Food and biological process engineering is a discipline concerned with applying principles of engineering to the fields of food production and distribution and biology. It is a broad field, with workers fulfilling a variety of roles ranging from design of food processing equipment to genetic modification of organisms. In some respects it is a combined field, drawing from the disciplines of food science and biological engineering to improve the earth's food supply.

References

  1. 1 2 3 4 Heldman, Dennis R.; Lund, Daryl B. (2010), "The Beginning, Current, and Future of Food Engineering: A Perspective", Food Engineering Series, New York, NY: Springer New York, pp. 3–18, doi:10.1007/978-1-4419-7475-4_1, ISBN   978-1-4419-7474-7 , retrieved 2020-11-01
  2. 1 2 3 4 5 6 7 8 "EOLSS eBook – Food Engineering". eolss.net. Retrieved 2020-11-01.
  3. 1 2 Saguy, I. Sam; Roos, Yrjö H.; Cohen, Eli (2018-06-01). "Food engineering and food science and technology: Forward-looking journey to future new horizons". Innovative Food Science & Emerging Technologies. 47: 326–334. doi:10.1016/j.ifset.2018.03.001. ISSN   1466-8564. S2CID   102701480.
  4. Meghwal, Murlidhar (2016-11-18). Meghwal, Murlidhar; Goyal, Megh R (eds.). Food Engineering. doi:10.1201/9781315366258. ISBN   9781771883696.
  5. 1 2 3 4 5 6 7 8 9 10 Boom, R. M.; Janssen, A. E. M. (2014-01-01), "Food Engineering", in Van Alfen, Neal K. (ed.), Encyclopedia of Agriculture and Food Systems, Oxford: Academic Press, pp. 154–166, doi:10.1016/b978-0-444-52512-3.00060-7, ISBN   978-0-08-093139-5 , retrieved 2020-11-01
  6. "Evaporation in food industry - Efficiency Finder". wiki.zero-emissions.at. Retrieved 2020-11-01.
  7. "Eco-friendly packaging in the food and beverage industry: Types & benefits". Plant Engineering. 2015-06-05. Retrieved 2020-11-01.
  8. Wang, Lijun (2014-10-01). "Energy efficiency technologies for sustainable food processing". Energy Efficiency. 7 (5): 791–810. doi:10.1007/s12053-014-9256-8. ISSN   1570-6478. S2CID   255485007.
  9. 1 2 Admin, Bromley. "Food safety for businesses". www.bromley.gov.uk. Archived from the original on 2022-01-25. Retrieved 2020-11-01.
  10. Nutrition, Center for Food Safety and Applied (2020-02-11). "Hazard Analysis Critical Control Point (HACCP)". FDA. Retrieved 2020-11-01.
  11. "ISO 22000:2018". International Organization for Standardization . Retrieved 2021-06-05.
  12. 1 2 3 4 Murlidhar, Meghwal; Goyal, Megh Raj. Food Engineering: Emerging Issues, Modeling and Applications. Oakville, ON, Canada. ISBN   978-1-77188-369-6. OCLC   955601763.
  13. 1 2 3 4 5 Roos, Yrjö H.; Fryer, Peter J.; Knorr, Dietrich; Schuchmann, Heike P.; Schroën, Karin; Schutyser, Maarten A. I.; Trystram, Gilles; Windhab, Erich J. (2015-06-03). "Food Engineering at Multiple Scales: Case Studies, Challenges and the Future—A European Perspective". Food Engineering Reviews. 8 (2): 91–115. doi:10.1007/s12393-015-9125-z. ISSN   1866-7910. S2CID   107933426.
  14. "Why Population Matters to Food Security | Toolkits". toolkits.knowledgesuccess.org. Retrieved 2020-11-02.