Discrimination testing

Last updated

Discrimination testing is a technique employed in sensory analysis to determine whether there is a detectable difference among two or more products. The test uses a group of assessors (panellists) with a degree of training appropriate to the complexity of the test to discriminate from one product to another through one of a variety of experimental designs. Though useful, these tests typically do not quantify or describe any differences, requiring a more specifically trained panel under different study design to describe differences and assess significance of the difference. [1]

Contents

Statistical basis

The statistical principle behind any discrimination test should be to reject a null hypothesis (H0) that states there is no detectable difference between two (or more) products. If there is sufficient evidence to reject H0 in favor of the alternative hypothesis, HA: There is a detectable difference, then a difference can be recorded. However, failure to reject H0 should not be assumed to be sufficient evidence to accept it. H0 is formulated on the premise that all of the assessors guessed when they made their response. The statistical test chosen should give a probability value that the result was arrived at through pure guesswork. If this probability is sufficiently low (usually below 0.05 or 5%) then H0 can be rejected in favor of HA.

Tests used to decide whether or not to reject H0 include binomial, χ2 (Chi-squared), t-test etc.

Types of test

A number of tests can be classified as discrimination tests. If it's designed to detect a difference then it's a discrimination test. The type of test determines the number of samples presented to each member of the panel and also the question(s) they are asked to respond to.

Schematically, these tests may be described as follows; A & B are used for knowns, X and Y are used for different unknowns, while (AB) means that the order of presentation is unknown:

Paired comparison
XY or (AB) – two unknown samples, known to be different, test is which satisfies some criterion (X or Y); unlike the others this is not an equality test.
Duo-trio
AXY – one known, two unknown, test is which unknown is the known (X = A or Y = A)
Triangle
(XXY) – three unknowns, test is which is odd one out (Y = 1, Y = 2, or Y = 3).
ABX
ABX – two knowns, one unknown, test is which of the knowns the unknown is (X = A or X = B).
Duo-trio in constant reference mode
(AB)X – three unknowns, where it is stated that the first two are different, but which is which is not identified, test is which of the first two the third is (X = 1 or X = 2).

Signal Detection Theory

Notes and references

  1. Rogers, Lauren; Hort, Joanne; Kemp, Sarah E.; Hollowood, Tracey, eds. (August 7, 2024). Discrimination Testing in Sensory Evaluation. John Wiley & Sons. doi:10.1002/9781118635353. ISBN   9780470671405 . Retrieved February 1, 2025.

Related Research Articles

<span class="mw-page-title-main">Kolmogorov–Smirnov test</span> Statistical test comparing two probability distributions

In statistics, the Kolmogorov–Smirnov test is a nonparametric test of the equality of continuous, one-dimensional probability distributions. It can be used to test whether a sample came from a given reference probability distribution, or to test whether two samples came from the same distribution. Intuitively, it provides a method to qualitatively answer the question "How likely is it that we would see a collection of samples like this if they were drawn from that probability distribution?" or, in the second case, "How likely is it that we would see two sets of samples like this if they were drawn from the same probability distribution?". It is named after Andrey Kolmogorov and Nikolai Smirnov.

<span class="mw-page-title-main">Statistics</span> Study of collection and analysis of data

Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.

<span class="mw-page-title-main">Statistical hypothesis test</span> Method of statistical inference

A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently supports a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a p-value computed from the test statistic. Roughly 100 specialized statistical tests have been defined.

In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods. If the more constrained model is supported by the observed data, the two likelihoods should not differ by more than sampling error. Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero.

In scientific research, the null hypothesis is the claim that the effect being studied does not exist. The null hypothesis can also be described as the hypothesis in which no relationship exists between two sets of data or variables being analyzed. If the null hypothesis is true, any experimentally observed effect is due to chance alone, hence the term "null". In contrast with the null hypothesis, an alternative hypothesis is developed, which claims that a relationship does exist between two variables.

In frequentist statistics, power is a measure of the ability of an experimental design and hypothesis testing setup to detect a particular effect if it is truly present. In typical use, it is a function of the test used, the assumed distribution of the test, and the effect size of interest. High statistical power is related to low variability, large sample sizes, large effects being looked for, and less stringent requirements for statistical significance.

<i>Z</i>-test Statistical test

A Z-test is any statistical test for which the distribution of the test statistic under the null hypothesis can be approximated by a normal distribution. Z-test tests the mean of a distribution. For each significance level in the confidence interval, the Z-test has a single critical value which makes it more convenient than the Student's t-test whose critical values are defined by the sample size. Both the Z-test and Student's t-test have similarities in that they both help determine the significance of a set of data. However, the z-test is rarely used in practice because the population deviation is difficult to determine.

The Mann–Whitney test is a nonparametric statistical test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X.

Student's t-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis. It is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in the test statistic were known. When the scaling term is estimated based on the data, the test statistic—under certain conditions—follows a Student's t distribution. The t-test's most common application is to test whether the means of two populations are significantly different. In many cases, a Z-test will yield very similar results to a t-test because the latter converges to the former as the size of the dataset increases.

In statistical hypothesis testing, the alternative hypothesis is one of the proposed propositions in the hypothesis test. In general the goal of hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of alternative hypothesis instead of the exclusive proposition in the test. It is usually consistent with the research hypothesis because it is constructed from literature review, previous studies, etc. However, the research hypothesis is sometimes consistent with the null hypothesis.

<span class="mw-page-title-main">One- and two-tailed tests</span> Alternative ways of computing the statistical significance of a parameter inferred from a data set

In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test is appropriate if the estimated value is greater or less than a certain range of values, for example, whether a test taker may score above or below a specific range of scores. This method is used for null hypothesis testing and if the estimated value exists in the critical areas, the alternative hypothesis is accepted over the null hypothesis. A one-tailed test is appropriate if the estimated value may depart from the reference value in only one direction, left or right, but not both. An example can be whether a machine produces more than one-percent defective products. In this situation, if the estimated value exists in one of the one-sided critical areas, depending on the direction of interest, the alternative hypothesis is accepted over the null hypothesis. Alternative names are one-sided and two-sided tests; the terminology "tail" is used because the extreme portions of distributions, where observations lead to rejection of the null hypothesis, are small and often "tail off" toward zero as in the normal distribution, colored in yellow, or "bell curve", pictured on the right and colored in green.

Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies, different sample sizes may be allocated, such as in stratified surveys or experimental designs with multiple treatment groups. In a census, data is sought for an entire population, hence the intended sample size is equal to the population. In experimental design, where a study may be divided into different treatment groups, there may be different sample sizes for each group.

The Wilcoxon signed-rank test is a non-parametric rank test for statistical hypothesis testing used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. The one-sample version serves a purpose similar to that of the one-sample Student's t-test. For two matched samples, it is a paired difference test like the paired Student's t-test. The Wilcoxon test is a good alternative to the t-test when the normal distribution of the differences between paired individuals cannot be assumed. Instead, it assumes a weaker hypothesis that the distribution of this difference is symmetric around a central value and it aims to test whether this center value differs significantly from zero. The Wilcoxon test is a more powerful alternative to the sign test because it considers the magnitude of the differences, but it requires this moderately strong assumption of symmetry.

This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics and Glossary of experimental design.

The sign test is a statistical test for consistent differences between pairs of observations, such as the weight of subjects before and after treatment. Given pairs of observations for each subject, the sign test determines if one member of the pair tends to be greater than the other member of the pair.

In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false.

Omnibus tests are a kind of statistical test. They test whether the explained variance in a set of data is significantly greater than the unexplained variance, overall. One example is the F-test in the analysis of variance. There can be legitimate significant effects within a model even if the omnibus test is not significant. For instance, in a model with two independent variables, if only one variable exerts a significant effect on the dependent variable and the other does not, then the omnibus test may be non-significant. This fact does not affect the conclusions that may be drawn from the one significant variable. In order to test effects within an omnibus test, researchers often use contrasts.

An ABX test is a method of comparing two choices of sensory stimuli to identify detectable differences between them. A subject is presented with two known samples followed by one unknown sample X that is randomly selected from either A or B. The subject is then required to identify X as either A or B. If X cannot be identified reliably with a low p-value in a predetermined number of trials, then the null hypothesis cannot be rejected and it cannot be proven that there is a perceptible difference between A and B.

Verification and validation of computer simulation models is conducted during the development of a simulation model with the ultimate goal of producing an accurate and credible model. "Simulation models are increasingly being used to solve problems and to aid in decision-making. The developers and users of these models, the decision makers using information obtained from the results of these models, and the individuals affected by decisions based on such models are all rightly concerned with whether a model and its results are "correct". This concern is addressed through verification and validation of the simulation model.

The Two-proportion Z-test is a statistical method used to determine whether the difference between the proportions of two groups, coming from a binomial distribution is statistically significant. This approach relies on the assumption that the sample proportions follow a normal distribution under the Central Limit Theorem, allowing the construction of a z-test for hypothesis testing and confidence interval estimation. It is used in various fields to compare success rates, response rates, or other proportions across different groups.