Carrelame

Last updated
Carrelame
Carrelame Structure.svg
Names
IUPAC name
(Z)-N-{[(3,5-Dichlorophenyl)amino][(diphenylmethyl)amino]methylene}glycine
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C22H19Cl2N3O2/c23-17-11-18(24)13-19(12-17)26-22(25-14-20(28)29)27-21(15-7-3-1-4-8-15)16-9-5-2-6-10-16/h1-13,21H,14H2,(H,28,29)(H2,25,26,27)
    Key: QMIBAVZANYVPEF-UHFFFAOYSA-N
  • InChI=1/C22H19Cl2N3O2/c23-17-11-18(24)13-19(12-17)26-22(25-14-20(28)29)27-21(15-7-3-1-4-8-15)16-9-5-2-6-10-16/h1-13,21H,14H2,(H,28,29)(H2,25,26,27)
    Key: QMIBAVZANYVPEF-UHFFFAOYAI
  • c1ccc(cc1)C(c2ccccc2)N/C(=N/CC(=O)O)/Nc3cc(cc(c3)Cl)Cl
Properties
C22H19Cl2N3O2
Molar mass 428.31 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Carrelame is an extremely high potency artificial sweetener of the guanidine class, closely related to lugduname. While carrelame is roughly 200,000 times as sweet as sucrose, lugduname is still somewhat sweeter. [1] It appears safe in pigs. [2]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Aspartame</span> Artificial non-saccharide sweetener

Aspartame is an artificial non-saccharide sweetener commonly used as a sugar substitute in foods and beverages. 200 times sweeter than sucrose, it is a methyl ester of the aspartic acid/phenylalanine dipeptide with brand names NutraSweet, Equal, and Canderel. Discovered in 1965, aspartame was approved by the US Food and Drug Administration (FDA) in 1974 and re-approved in 1981 after its initial approval was briefly revoked.

<span class="mw-page-title-main">Stevia</span> Sweetener and sugar substitute

Stevia is a sweet sugar substitute that is about 50 to 300 times sweeter than sugar. It is extracted from the leaves of Stevia rebaudiana, a plant native to areas of Paraguay and Brazil. The active compounds in stevia are steviol glycosides. Stevia is heat-stable, pH-stable, and not fermentable. Humans cannot metabolize the glycosides in stevia, and it therefore has zero calories. Its taste has a slower onset and longer duration than that of sugar, and at high concentrations some of its extracts may have an aftertaste described as licorice-like or bitter. Stevia is used in sugar- and calorie-reduced food and beverage products as an alternative for variants with sugar.

<span class="mw-page-title-main">Sucralose</span> Non-nutritive sweetener

Sucralose is an artificial sweetener and sugar substitute. As the majority of ingested sucralose is not metabolized by the body, it adds very little food energy. In the European Union, it is also known under the E number E955. It is produced by chlorination of sucrose, selectively replacing three of the hydroxy groups—in the C1 and C6 positions of the fructose portion and the C4 position of the glucose portion—to give a 1,6-dichloro-1,6-dideoxyfructose–4-chloro-4-deoxygalactose disaccharide. Sucralose is about 600 times sweeter than sucrose, 3 times as sweet as both aspartame and acesulfame potassium, and 2 times as sweet as sodium saccharin.

<span class="mw-page-title-main">Sugar substitute</span> Sugarless food additive intended to provide a sweet taste

A sugar substitute is a food additive that provides a sweetness like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie or low-calorie sweetener. Artificial sweeteners may be derived through manufacturing of plant extracts or processed by chemical synthesis. Sugar substitute products are commercially available in various forms, such as small pills, powders and packets.

<span class="mw-page-title-main">Thaumatin</span> Low-calorie sweetener and flavor modifier

Thaumatin is a low-calorie sweetener and taste modifier. The protein is often used primarily for its flavor-modifying properties and not exclusively as a sweetener.

<span class="mw-page-title-main">Saccharin</span> Chemical compound

Saccharin, also called saccharine, benzosulfimide, or E954, or used in saccharin sodium or saccharin calcium forms, is a non-nutritive artificial sweetener. Saccharin is a sultam that is about 500 times sweeter than sucrose, but has a bitter or metallic aftertaste, especially at high concentrations. It is used to sweeten products, such as drinks, candies, baked goods, tobacco products, excipients, and for masking the bitter taste of some medicines. It appears as white crystals and is odorless.

<span class="mw-page-title-main">Acesulfame potassium</span> Calorie-free sugar substitute

Acesulfame potassium, also known as acesulfame K or Ace K, is a synthetic calorie-free sugar substitute often marketed under the trade names Sunett and Sweet One. In the European Union, it is known under the E number E950. It was discovered accidentally in 1967 by German chemist Karl Clauss at Hoechst AG. Acesulfame potassium is the potassium salt of 6-methyl-1,2,3-oxathiazine-4(3H)-one 2,2-dioxide. It is a white crystalline powder with molecular formula C
4
H
4
KNO
4
S
and a molecular weight of 201.24 g/mol.

<span class="mw-page-title-main">Diet soda</span> Soft drink with little or no sugar or calories

Diet sodas are soft drinks which contain little or no sugar or calories. First introduced onto the market in 1949, diet sodas are typically marketed for those with diabetes or who wish to reduce their sugar or caloric intake.

<i>Stevia rebaudiana</i> Species of flowering plant

Stevia rebaudiana is a plant species in the genus Stevia of the family Asteraceae. It is commonly known as candyleaf, sweetleaf or sugarleaf.

G.D. Searle, LLC is a wholly owned subsidiary of Pfizer. It is currently a trademark company and subsidiary of Pfizer, operating in more than 43 countries. It also operates as a distribution trademark for various pharmaceuticals that were developed by G. D. Searle & Company. Searle is most notable for having developed the first female birth control pill, and the artificial sweetener NutraSweet. Searle also developed the drug Lomotil, an antidiarrheal medication. One notable alumnus of Searle is Donald Rumsfeld, the Secretary of Defense for George W. Bush in the 2000s. Prior to its 1985 merger with Monsanto, Searle was a company mainly focusing on life sciences, specifically pharmaceuticals, agriculture, and animal health.

<span class="mw-page-title-main">Miraculin</span> A protein from West Africa with taste-modifying activity

Miraculin is a taste modifier, a glycoprotein extracted from the fruit of Synsepalum dulcificum. The berry, also known as the miracle fruit, was documented by explorer Chevalier des Marchais, who searched for many different fruits during a 1725 excursion to its native West Africa.

<span class="mw-page-title-main">Sweetness</span> Basic taste

Sweetness is a basic taste most commonly perceived when eating foods rich in sugars. Sweet tastes are generally regarded as pleasurable. In addition to sugars like sucrose, many other chemical compounds are sweet, including aldehydes, ketones, and sugar alcohols. Some are sweet at very low concentrations, allowing their use as non-caloric sugar substitutes. Such non-sugar sweeteners include saccharin, aspartame, sucralose and stevia. Other compounds, such as miraculin, may alter perception of sweetness itself.

<span class="mw-page-title-main">Brazzein</span> Protein

Brazzein is a sweet-tasting protein that occurs naturally in oubli, a fruit native to the Atlantic coastal areas of Central Africa. Brazzein was first isolated in 1994 by scientists at the University of Wisconsin–Madison. It is roughly 500 to 2000 times sweeter than sucrose.

<span class="mw-page-title-main">Lugduname</span> Chemical compound

Lugduname is one of the most potent sweetening agents known. Lugduname has been estimated to be between 220,000 and 300,000 times as sweet as sucrose, with estimates varying between studies. It was developed at the University of Lyon, France in 1996. Lugduname is part of a family of potent sweeteners which contain acetic acid functional groups attached to guanidine.

<span class="mw-page-title-main">Pentadin</span> Sweet-tasting protein

Pentadin, a sweet-tasting protein, was discovered and isolated in 1989, in the fruit of oubli, a climbing shrub growing in some tropical countries of Africa. Sweet tasting proteins are often used in the treatment of diabetes, obesity, and other metabolic disorders that one can experience. These proteins are isolated from the pulp of various fruits, typically found in rain forests and are also used as low calorie sweeteners that can enhance and modify existing foods.

<span class="mw-page-title-main">TAS2R9</span> Protein-coding gene in the species Homo sapiens

Taste receptor type 2 member 9 is a protein that in humans is encoded by the TAS2R9 gene.

<span class="mw-page-title-main">TAS1R2</span> Protein

T1R2 - Taste receptor type 1 member 2 is a protein that in humans is encoded by the TAS1R2 gene.

<span class="mw-page-title-main">TAS2R31</span> Protein-coding gene in the species Homo sapiens

Taste receptor, type 2, member 31, also known as TAS2R31, is a protein which in humans is encoded by the TAS2R31 gene. This bitter taste receptor has been shown to respond to saccharin in vitro.

<span class="mw-page-title-main">Taste</span> Sense of chemicals on the tongue

The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste. Taste is the perception stimulated when a substance in the mouth reacts chemically with taste receptor cells located on taste buds in the oral cavity, mostly on the tongue. Taste, along with the sense of smell and trigeminal nerve stimulation, determines flavors of food and other substances. Humans have taste receptors on taste buds and other areas, including the upper surface of the tongue and the epiglottis. The gustatory cortex is responsible for the perception of taste.

Sugar preference is a biological phenomena where sugar is favored over artificial sweeteners by both humans and animals.

References

  1. Glaser D (2002), "Specialization and phyletic trends of sweetness reception in animals" (PDF), Pure Appl. Chem., 74 (7): 1153–1158, doi:10.1351/pac200274071153, S2CID   97439028
  2. Nofre, C; Glaser, D; Tinti, JM; Wanner, M (2002). "Gustatory responses of pigs to sixty compounds tasting sweet to humans". Journal of Animal Physiology and Animal Nutrition. 86 (3–4): 90–96. doi:10.1046/j.1439-0396.2002.00361.x. PMID   11972677.

Additional reading