Cronobacter

Last updated

Cronobacter
Enterobacter sakazakii.tif
Cronobacter sakazakii
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Enterobacterales
Family: Enterobacteriaceae
Genus: Cronobacter
(Iversen et al. 2008) [1] (Joseph et al. 2011) [2]
Species

C. sakazakii
C. malonaticus
C. turicensis
C. muytjensii
C. dublinensis
C. universalis
C. condimenti

Contents

Cronobacter is a genus of Gram-negative, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped bacteria of the family Enterobacteriaceae. Several Cronobacter species are desiccation resistant and persistent in dry products such as powdered infant formula. [3] They are generally motile, reduce nitrate, use citrate, hydrolyze esculin and arginine, and are positive for L-ornithine decarboxylation. Acid is produced from D-glucose, D-sucrose, D-raffinose, D-melibiose, D-cellobiose, D-mannitol, D-mannose, L-rhamnose, L-arabinose, D-trehalose, galacturonate and D-maltose. Cronobacter spp. are also generally positive for acetoin production (Voges–Proskauer test) and negative for the methyl red test, indicating 2,3-butanediol rather than mixed acid fermentation. The type species of the genus Cronobacter is Cronobacter sakazakii comb. nov.

Clinical significance

All Cronobacter species, except C. condimenti, have been linked retrospectively to clinical cases of infection. While cases of infection do occur in adults, these are generally non-life-threatening, and often secondary colonization to underlying health problems. Infection in infants is associated with neonatal bacteraemia, meningitis and necrotising enterocolitis with a high case fatality rate and ongoing disablement of survivors.[ citation needed ]

Increased awareness that Cronobacter are ubiquitous environmental organisms, initiatives by the WHO and FAO, and advice on infant feeding (including safe temperatures for reconstitution of powdered infant formula, and appropriate hold times, post-reconstitution) has drastically reduced the occurrence of infection outbreaks. Additionally, the introduction of an ISO standard method for detection of these organisms has aided the infant formula industry to control their presence in manufacturing sites and products, further reducing the risk to infants. However, isolated cases can still occur, in part due to Cronobacter being ubiquitous in home environments as well.

Taxonomy

Cronobacter was first proposed as a new genus in 2007 as a clarification of the taxonomic relationship of the biogroups found among strains of Enterobacter sakazakii . [4] This proposal was validly published in 2008 with five species and three subspecies named. [1] The genus definition was further revised in 2012 to seven named species when a name (C. universalis) was given to a group of isolates that were deemed too few in number to accurately describe during the original taxonomic work, and a single additional isolate was also named (C. condimenti). In 2013 Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis were reclassified into the genus Cronobacter, however this was corrected in 2014 when Stephan et al. published evidence that these should be classified as Franconibacter helveticus , Franconibacter pulveris and Siccibacter turicensis respectively. [5]

Etymology

Cronobacter (Cro.no.bac'ter) is from the Greek noun Cronos (Κρόνος), one of the Titans of mythology, who swallowed each of his children as soon as they were born, and the New Latin masculine noun bacter, a rod, resulting in the N.L. masc. n. Cronobacter, a rod that can cause illness in neonates.

Cronobacter sakazakii (sak.a.zaki.ī. N.L. gen. n. sakazakii, of Sakazaki) is named in honour of the Japanese microbiologist Riichi Sakazaki (ja:坂崎利一). [6]

Cronobacter malonaticus (mă.lō.nă.tĭ'cŭs) is from N.L. n. malonas-atis, malonate; L. suff. -icus, suffix used with the sense of belonging to; N.L. masc. adj. malonaticus, pertaining to the use of malonate. The type strain, CDC 1058-77T, was isolated from a breast abscess. [6]

Cronobacter turicensis (tŭ.rĭ.sĕn'sĭs) is from the L. masc. adj. turicensis, pertaining to Turicum, the Latin name of Zurich, Switzerland. [4]

Cronobacter muytjensii (mœ.tjәn.sĭ.ī), from the N.L. gen. n. muytjensii, of Muytjens, is named in honour of the Dutch microbiologist Harry Muytjens, who performed much of the early work on Enterobacter sakazakii. [7] [8] [9] [10] [11]

Cronobacter dublinensis (dŭb.lĭn.ĕn'sĭs, from the N.L. masc. adj. dublinensis, pertains to Dublin, Ireland, the origin of the type strain. [4]

C. dublinensis subsp. lausannensis (lô.săn.ĕn'sĭs) from the L. masc. adj. lausannensis, pertains to Lausanne, Switzerland, the origin of the type strain for this subspecies. [4]

C. dublinensis subsp. lactaridi (lăkt.ărĭd.ī), is from the L. n. lac lactis, milk, L. adj. aridus, dried, to give N.L. gen. n. lactaridi, of a dried milk. [4]

Cronobacter universalis (u.ni.ver.sa'lis) is L. masc. adj. universalis, of or belonging to all or universal. [2]

Cronobacter condimenti (con.di.men'ti) is from the L. gen. n. condimenti, of spice or seasoning, as it was first isolated in part from spiced meat. [2]

See also

Related Research Articles

Multilocus sequence typing (MLST) is a technique in molecular biology for the typing of multiple loci, using DNA sequences of internal fragments of multiple housekeeping genes to characterize isolates of microbial species.

<i>Enterobacter</i> Genus of bacteria

Enterobacter is a genus of common Gram-negative, facultatively anaerobic, rod-shaped, non-spore-forming bacteria of the family Enterobacteriaceae. Cultures are found in soil, water, sewage, feces and gut environments. It is the type genus of the order Enterobacterales. Several strains of these bacteria are pathogenic and cause opportunistic infections in immunocompromised hosts and in those who are on mechanical ventilation. The urinary and respiratory tracts are the most common sites of infection. The genus Enterobacter is a member of the coliform group of bacteria. It does not belong to the fecal coliforms group of bacteria, unlike Escherichia coli, because it is incapable of growth at 44.5 °C in the presence of bile salts. Some of them show quorum sensing properties.

<i>Pantoea</i> Genus of bacteria

Pantoea is a genus of Gram-negative bacteria of the family Erwiniaceae, recently separated from the genus Enterobacter. This genus includes at least 20 species. Pantoea bacteria are yellow pigmented, ferment lactose, are motile, and form mucoid colonies. Some species show quorum sensing ability that could drive different gene expression, hence controlling certain physiological activities. Levan polysaccharide produced by Pantoea agglomerans ZMR7 was reported to decrease the viability of rhabdomyosarcoma (RD) and breast cancer (MDA) cells compared with untreated cancer cells. In addition, it has high antiparasitic activity against the promastigote of Leishmania tropica.

<i>Cronobacter sakazakii</i> Species of bacterium

Cronobacter sakazakii, which before 2007 was named Enterobacter sakazakii, is an opportunistic Gram-negative, rod-shaped, pathogenic bacterium that can live in very dry places, otherwise known as xerotolerance. C. sakazakii utilizes a number of genes to survive desiccation and this xerotolerance may be strain specific. The majority of C. sakazakii cases are adults but low-birth-weight preterm neonatal and older infants are at the highest risk. The pathogen is a rare cause of invasive infection in infants, with historically high case fatality rates (40–80%).

Pluralibacter gergoviae is a Gram-negative, motile, facultatively-anaerobic, rod-shaped bacterium. P. gergoviae is of special interest to the cosmetics industry, as it displays resistance to parabens, a common antimicrobial agent added to cosmetic products.

Alicyclobacillus is a genus of Gram-variable, rod-shaped, spore-forming bacteria. The bacteria are able to grow in acidic conditions, while the spores are able to survive typical pasteurization procedures.

Agromyces is a genus in the phylum Actinomycetota (Bacteria).

Alistipes is a Gram-negative genus of rod-shaped anaerobic bacteria in the phylum Bacteroidota. When members of this genus colonize the human gastrointestinal (GI) tract, they provide protective effects against colitis, autism, and cirrhosis. However, this genus can also cause dysbiosis by contributing to anxiety, chronic fatigue syndrome, depression, and hypertension. Showcasing priority effects in microbiome assembly, when infant GI tracts have bacteria of the species Staphylococcus but not the species Faecalibacterium, Alistipes species become less capable of colonization.

<i>Acaricomes phytoseiuli</i> Species of bacterium

Acaricomes phytoseiuli is a bacterium which is thought to be a pathogen of the mite Phytoseiulus persimilis. A. phytoseiuli causes a set of symptoms in the mite, known as nonresponding syndrome or NR syndrome. Dramatic changes in longevity, fecundity, and behavior are characteristic with this disease. The bacteria accumulate in the lumen of the mite's digestive tract and cause extreme degeneration of its epithelium. Infection with A. phytoseiuli greatly reduces the mite's attraction to herbivore-induced plant volatiles, and the mite is more prone to leave patches with ample prey. The disease is transmitted horizontally by means of feces and debris. The strain that was isolated was “CSC”. Differences between strain CSC compared to its closest phylogenetic neighbors are as follows: CSC uses glucose-1-phosphate and L-glutamic acid, and its colonies are more yellow in appearance as compared to its phylogenetic neighbors which are more cream/white in color.

Cronobacter turicensis is a bacterium. It is usually food-borne and pathogenic. It is named after Turicum, the Latin name of Zurich, as the type strain originates from there. Its type strain is strain 3032. This strain was first isolated from a fatal case of neonatal meningitis. C. Turicensis strains are indole negative but malonate, dulcitol and methyl-α-D-glucopyranoside positive.

Cronobacter dublinensis is a bacterium. Its name pertains to Dublin, the origin of the type strain. The type strain is originally from a milk powder manufacturing facility. C. dublinensis sp. nov. is dulcitol negative and methyl-α-D-glucopyranoside positive and generally positive for indole production.

Cronobacter muytjensii is a bacterium. It is named after Harry Muytjens. Its type strain is ATCC 51329T. It is indole, dulcitol, and malonate positive but palatinose and methyl-α-D-glucopyranoside negative.

Cronobacter malonaticus, formerly considered a subspecies of Cronobacter sakazakii, is a bacterium. Its type strain is CDC 1058-77T.

Enterobacter cowanii is a Gram-negative, motile, facultatively-anaerobic, rod-shaped bacterium of the genus Enterobacter. The species is typically associated with natural environments and is found in soil, water, and sewage. E. cowanii is associated with plant pathogens that exhibit symptoms of severe defoliation and plant death. This species, originally referred to as NIH Group 42, was first proposed in 2000 as a potential member of the family Enterobacteriaceae. The name of this species honors S. T. Cowan, an English bacteriologist, for his significant contributions to the field of bacterial taxonomy.

Virgibacillus is a genus of Gram-positive, rod-shaped (bacillus) bacteria and a member of the phylum Bacillota. Virgibacillus species can be obligate aerobes, or facultative anaerobes and catalase enzyme positive. Under stressful environmental conditions, the bacteria can produce oval or ellipsoidal endospores in terminal, or sometimes subterminal, swollen sporangia. The genus was recently reclassified from the genus Bacillus in 1998 following an analysis of the species V. pantothenticus. Subsequently, a number of new species have been discovered or reclassified as Virgibacillus species.

Albibacter helveticus is a Gram-negative, aerobic, facultatively methanotrophic, non-spore-forming, neutrophilic and mesophilic bacterium species from the genus Albibacter which has been isolated from soil from Switzerland.

Azospirillum is a Gram-negative, microaerophilic, non-fermentative and nitrogen-fixing bacterial genus from the family of Rhodospirillaceae. Azospirillum bacteria can promote plant growth.

Acanthopleuribacter pedis is a Gram-negative, rod-shaped bacterium found in marine environments.

Pluralibacter is a genus of Gram negative bacteria from the family of Enterobacteriaceae. The genus consists of two species, P. gergoviae and P. pyrinus. Both species were originally classified in the genus Enterobacter but were reclassified into the novel genus Pluralibacter in 2013.

Pluralibacter pyrinus is a Gram-negative, motile, facultatively-anaerobic, rod-shaped bacterium. P. pyrinus is the causitive agent of brown leaf spot disease of pear trees.

References

  1. 1 2 Iversen, C.; Mullane, N.; McCardell, B.; Tall, B. D.; Lehner, A.; Fanning, S.; Stephan, R.; Joosten, H. (2008). "Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov. comb. nov., C. malonaticus sp. nov., C. turicensis sp. nov., C. muytjensii sp. nov., C. dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, C. dublinensis sp. nov. subsp. dublinensis subsp. nov., C. dublinensis sp. nov. subsp. lausannensis subsp. nov., and C. dublinensis sp. nov. subsp. lactaridi subsp. nov". International Journal of Systematic and Evolutionary Microbiology . 58 (6): 1442–1447. doi:10.1099/ijs.0.65577-0. PMID   18523192.
  2. 1 2 3 Joseph, Susan; Cetinkaya, Esin; Drahovska, Hana; Levican, Arturo; Figueras, Maria J.; Forsythe, Stephen J. (2012). "Cronobacter condimenti sp. nov., isolated from spiced meat and Cronobacter universalis sp. nov., a novel species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water, and food ingredients". International Journal of Systematic and Evolutionary Microbiology . 62 (Pt 6): 1277–1283. doi: 10.1099/ijs.0.032292-0 . PMID   22661070.
  3. Osaili, T.; Forsythe, S. (31 December 2009). "Desiccation resistance and persistence of Cronobacter species in infant formula" (PDF). International Journal of Food Microbiology. 136 (2): 214–220. doi:10.1016/j.ijfoodmicro.2009.08.006. PMID   19720413.
  4. 1 2 3 4 5 Iversen, Carol; Lehner, Angelika; Mullane, Niall; Bidlas, Eva; Cleenwerck, Ilse; Marugg, John; Fanning, Séamus; Stephan, Roger; Joosten, Han (December 2007). "The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1". BMC Evolutionary Biology. 7 (1): 64. doi: 10.1186/1471-2148-7-64 . PMC   1868726 . PMID   17439656.
  5. Stephan, Roger; Grim, Christopher J.; Gopinath, Gopal R.; Mammel, Mark K.; Sathyamoorthy, Venugopal; Trach, Larisa H.; Chase, Hannah R.; Fanning, Séamus; Tall, Ben D. (1 October 2014). "Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively". International Journal of Systematic and Evolutionary Microbiology. 64 (Pt_10): 3402–3410. doi:10.1099/ijs.0.059832-0. PMC   4179279 . PMID   25028159.
  6. 1 2 Farmer, J. J.; Asbury, M. A.; Hickman, F. W.; Brenner, D. J. (1 July 1980). "Enterobacter sakazakii: A New Species of 'Enterobacteriaceae' Isolated from Clinical Specimens". International Journal of Systematic Bacteriology. 30 (3): 569–584. doi: 10.1099/00207713-30-3-569 .
  7. Muytjens, H L; van der Ros-van de Repe, J; van Druten, H A (October 1984). "Enzymatic profiles of Enterobacter sakazakii and related species with special reference to the alpha-glucosidase reaction and reproducibility of the test system". Journal of Clinical Microbiology. 20 (4): 684–686. doi:10.1128/jcm.20.4.684-686.1984. PMC   271411 . PMID   6386874.
  8. Muytjens, H L; Zanen, H C; Sonderkamp, H J; Kollée, L A; Wachsmuth, I K; Farmer, J J (July 1983). "Analysis of eight cases of neonatal meningitis and sepsis due to Enterobacter sakazakii". Journal of Clinical Microbiology. 18 (1): 115–120. doi:10.1128/jcm.18.1.115-120.1983. PMC   270753 . PMID   6885983.
  9. Muytjens, H L; van der Ros-van de Repe, J (February 1986). "Comparative in vitro susceptibilities of eight Enterobacter species, with special reference to Enterobacter sakazakii". Antimicrobial Agents and Chemotherapy. 29 (2): 367–370. doi:10.1128/AAC.29.2.367. PMC   176414 . PMID   3636109.
  10. Muytjens, H L; Roelofs-Willemse, H; Jaspar, G H (April 1988). "Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae". Journal of Clinical Microbiology. 26 (4): 743–746. doi:10.1128/jcm.26.4.743-746.1988. PMC   266435 . PMID   3284901.
  11. Muytjens, Harry L.; Kollée, Louis A. A. (May 1990). "Enterobacter sakazakii meningitis in neonates: Causative role of formula?". The Pediatric Infectious Disease Journal. 9 (5): 372–373. doi: 10.1097/00006454-199005000-00016 . PMID   2352824.