2,3-Butanediol

Last updated
2,3-Butanediol
2,3-Butanediol.png
Names
Preferred IUPAC name
Butane-2,3-diol
Other names
2,3-Butylene glycol
Pseudobutylene glycol
2,3-Dihydroxybutane
Butan-2,3-diol
Diethanol[ citation needed ] & Bis-ethanol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.431 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-173-6
PubChem CID
UNII
  • InChI=1S/C4H10O2/c1-3(5)4(2)6/h3-6H,1-2H3
    Key: OWBTYPJTUOEWEK-UHFFFAOYSA-N
  • CC(C(C)O)O
Properties
C4H10O2
Molar mass 90.122 g·mol−1
AppearanceColorless liquid
Odor odorless
Density 0.987 g/mL
Melting point 19 °C (66 °F; 292 K)
Boiling point 177 °C (351 °F; 450 K)
Miscible
Solubility in other solventsSoluble in alcohol, ketones, ether
log P -0.92
Vapor pressure 0.23 hPa (20 °C)
Acidity (pKa)14.9
1.4366
Thermochemistry
213.0 J/K mol
-544.8 kJ/mol
Hazards
NFPA 704 (fire diamond)
1
1
0
Flash point 85 °C (185 °F; 358 K)
402 °C (756 °F; 675 K)
Lethal dose or concentration (LD, LC):
5462 mg/kg (rat, oral)
Related compounds
Related butanediols
1,4-Butanediol
1,3-Butanediol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

2,3-Butanediol is the organic compound with the formula (CH3CHOH)2. It is classified as a vic-diol (glycol). It exists as three stereoisomers, a chiral pair and the meso isomer. All are colorless liquids. Applications include precursors to various plastics and pesticides.

Contents

Isomerism

Of the three stereoisomers, two are enantiomers (levo- and dextro-2,3-butanediol) and one is a meso compound. [1] [2] The enantiomeric pair have (2R, 3R) and (2S, 3S) configurations at carbons 2 and 3, while the meso compound has configuration (2R, 3S) or, equivalently, (2S, 3R).

Industrial production and uses

2,3-Butanediol is prepared by hydrolysis of 2,3-epoxybutane: [3]

(CH3CH)2O + H2O → CH3(CHOH)2CH3

The isomer distribution depends on the stereochemistry of the epoxide.

The meso isomer is used to combine with naphthalene-1,5-diisocyanate. The resulting polyurethane is called "Vulkollan". [3]

Biological production

The (2R,3R)-stereoisomer of 2,3-butanediol is produced by a variety of microorganisms in a process known as butanediol fermentation. [4] It is found naturally in cocoa butter, in the roots of Ruta graveolens , sweet corn, and in rotten mussels. It is used in the resolution of carbonyl compounds in gas chromatography. [5]

During World War II research was done towards producing 2,3-butanediol by fermentation in order to produce 1,3-butadiene, the monomer of the polybutadiene used in a leading type of synthetic rubber. [6] It can be derived from the fermentation of sugarcane molasses. [7]

Fermentative production of 2,3-butanediol from carbohydrates involves a network of biochemical reactions that can be manipulated to maximize production. [8]

2,3-butanediol has been proposed as a rocket fuel that could be created on Mars by means of cyanobacteria and E. coli, shipped from Earth, working on resources available at the surface of Mars. [9]

2,3-Butanediol has been detected, in peppers, grape wine, anatidaes.

Reactions

2,3-Butanediol undergo dehydration to form butanone (methyl ethyl ketone): [10]

(CH3CHOH)2 → CH3C(O)CH2CH3 + H2O

It can also undergo deoxydehydration to form butene: [11]

(CH3CHOH)2 + 2 H2 → C4H8 + 2 H2O

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Stereoisomerism</span> When molecules have the same atoms and bond structure but differ in 3D orientation

In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in space. This contrasts with structural isomers, which share the same molecular formula, but the bond connections or their order differs. By definition, molecules that are stereoisomers of each other represent the same structural isomer.

In chemistry, a racemic mixture, or racemate, is one that has equal amounts of left- and right-handed enantiomers of a chiral molecule or salt. Racemic mixtures are rare in nature, but many compounds are produced industrially as racemates.

<span class="mw-page-title-main">Tartaric acid</span> Organic acid found in many fruits

Tartaric acid is a white, crystalline organic acid that occurs naturally in many fruits, most notably in grapes, but also in bananas, tamarinds, and citrus. Its salt, potassium bitartrate, commonly known as cream of tartar, develops naturally in the process of fermentation. It is commonly mixed with sodium bicarbonate and is sold as baking powder used as a leavening agent in food preparation. The acid itself is added to foods as an antioxidant E334 and to impart its distinctive sour taste. Naturally occurring tartaric acid is a useful raw material in organic chemical synthesis. Tartaric acid, an alpha-hydroxy-carboxylic acid, is diprotic and aldaric in acid characteristics, and is a dihydroxyl derivative of succinic acid.

<span class="mw-page-title-main">Enantiomer</span> Stereoisomers which are non-superposable mirror images of each other

In chemistry, an enantiomer – also called optical isomer, antipode, or optical antipode – is one of two stereoisomers that are non-superposable onto their own mirror image. Enantiomers are much like one's right and left hands, when looking at the same face, they cannot be superposed onto each other. No amount of reorientation in three spatial dimensions will allow the four unique groups on the chiral carbon to line up exactly. The number of stereoisomers a molecule has can be determined by the number of chiral carbons it has. Stereoisomers include both enantiomers and diastereomers.

<span class="mw-page-title-main">Porphyrin</span> Heterocyclic organic compound with four modified pyrrole subunits

Porphyrins are a group of heterocyclic macrocycle organic compounds, composed of four modified pyrrole subunits interconnected at their α carbon atoms via methine bridges (=CH−). In vertebrates, an essential member of the porphyrin group is heme, which is a component of hemoproteins, whose functions include carrying oxygen in the bloodstream.

<span class="mw-page-title-main">Diastereomer</span> Molecules which are non-mirror image, non-identical stereoisomers

In stereochemistry, diastereomers are a type of stereoisomer. Diastereomers are defined as non-mirror image, non-identical stereoisomers. Hence, they occur when two or more stereoisomers of a compound have different configurations at one or more of the equivalent (related) stereocenters and are not mirror images of each other. When two diastereoisomers differ from each other at only one stereocenter, they are epimers. Each stereocenter gives rise to two different configurations and thus typically increases the number of stereoisomers by a factor of two.

<span class="mw-page-title-main">Meso compound</span>

A meso compound or meso isomer is a non-optically active member of a set of stereoisomers, at least two of which are optically active. This means that despite containing two or more stereocenters, the molecule is not chiral. A meso compound is "superimposable" on its mirror image. Two objects can be superimposed if all aspects of the objects coincide and it does not produce a "(+)" or "(-)" reading when analyzed with a polarimeter. The name is derived from the Greek mésos meaning “middle”.

<span class="mw-page-title-main">Chirality (chemistry)</span> Geometric property of some molecules and ions

In chemistry, a molecule or ion is called chiral if it cannot be superposed on its mirror image by any combination of rotations, translations, and some conformational changes. This geometric property is called chirality. The terms are derived from Ancient Greek χείρ (cheir) 'hand'; which is the canonical example of an object with this property.

In chemistry, stereoselectivity is the property of a chemical reaction in which a single reactant forms an unequal mixture of stereoisomers during a non-stereospecific creation of a new stereocenter or during a non-stereospecific transformation of a pre-existing one. The selectivity arises from differences in steric and electronic effects in the mechanistic pathways leading to the different products. Stereoselectivity can vary in degree but it can never be total since the activation energy difference between the two pathways is finite. Both products are at least possible and merely differ in amount. However, in favorable cases, the minor stereoisomer may not be detectable by the analytic methods used.

(<i>E</i>)-Stilbene Chemical compound

(E)-Stilbene, commonly known as trans-stilbene, is an organic compound represented by the condensed structural formula C6H5CH=CHC6H5. Classified as a diarylethene, it features a central ethylene moiety with one phenyl group substituent on each end of the carbon–carbon double bond. It has an (E) stereochemistry, meaning that the phenyl groups are located on opposite sides of the double bond, the opposite of its geometric isomer, cis-stilbene. Trans-stilbene occurs as a white crystalline solid at room temperature and is highly soluble in organic solvents. It can be converted to cis-stilbene photochemically, and further reacted to produce phenanthrene.

<span class="mw-page-title-main">Ethyl lactate</span> Chemical compound

Ethyl lactate, also known as lactic acid ethyl ester, is the organic compound with the formula CH3CH(OH)CO2CH2CH3. It is the ethyl ester of lactic acid. A colorless liquid, it is a chiral ester. Being naturally derived, it is readily available as a single enantiomer. It is commonly used as a solvent. This compound is considered biodegradable and can be used as a water-rinsible degreaser. Ethyl lactate is found naturally in small quantities in a wide variety of foods including wine, chicken, and various fruits. The odor of ethyl lactate when dilute is mild, buttery, creamy, with hints of fruit and coconut.

<span class="mw-page-title-main">Butanediol fermentation</span>

2,3-Butanediol fermentation is anaerobic fermentation of glucose with 2,3-butanediol as one of the end products. The overall stoichiometry of the reaction is

<span class="mw-page-title-main">1-Butanol</span> Chemical compound

1-Butanol, also known as butan-1-ol or n-butanol, is a primary alcohol with the chemical formula C4H9OH and a linear structure. Isomers of 1-butanol are isobutanol, butan-2-ol and tert-butanol. The unmodified term butanol usually refers to the straight chain isomer.

<span class="mw-page-title-main">Levoamphetamine</span> An amphetamine enantiomer

Levoamphetamine is a central nervous system (CNS) stimulant known to increase wakefulness and concentration in association with decreased appetite and fatigue. Pharmaceuticals that contain levoamphetamine are currently indicated and prescribed for the treatment of attention deficit hyperactivity disorder (ADHD), obesity, and narcolepsy in some countries.

<span class="mw-page-title-main">Diethyl tartrate</span> Chemical compound

Diethyl tartrate is an organic compound with the formula (HOCHCO2Et)2 (Et = ethyl). Three stereoisomers exist, R,R-, S,S-, and R,S (=S,R-). They are the ethyl esters of the respective R,R-, S,S-, and R,S-tartaric acids. The R,R- and S,S- isomers are enantiomeric, being mirror images. The meso stereoisomer is not chiral. The chiral isomer is far more common.

<span class="mw-page-title-main">Smart cosubstrate</span>

A smart cosubstrate is a type of cosubstrate used for cofactor regeneration to yield greater productivity and lower environmental impact (E-factor). A good example of a smart cosubstrate is a lactonizable diol.

Deoxydehydration (DODH) is a chemical reaction for removing two adjacent hydroxyl groups in a vicinal diol to form an alkene. In contrast to hydrodeoxygenation which uses hydrogen as a reductant, deoxydehydration is able to use a variety of other reductants such as alcohols and organic phosphines. In research, the most common homogeneous catalysts for this reaction use rhenium.

<span class="mw-page-title-main">2,3-Epoxybutane</span> Chemical compound

2,3-Epoxybutane is an organic compound with the formula CH3CH(O)CHCH3. It is an epoxide. The compound exists as three stereoisomers, a pair of enantiomers and the meso isomer. All are colorless liquids.

References

  1. Boutron P (1992). "Cryoprotection of red blood cells by a 2,3-butanediol containing mainly the levo and dextro isomers". Cryobiology . 29 (3): 347–358. doi:10.1016/0011-2240(92)90036-2. PMID   1499320.
  2. Wang Y, Tao F, Xu P (2014). "Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae". Journal of Biological Chemistry . 289 (9): 6080–6090. doi: 10.1074/jbc.M113.525535 . PMC   3937674 . PMID   24429283.
  3. 1 2 Heinz Gräfje, Wolfgang Körnig, Hans-Martin Weitz, Wolfgang Reiß, Guido Steffan, Herbert Diehl, Horst Bosche, Kurt Schneider and Heinz Kieczka "Butanediols, Butenediol, and Butynediol" in Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a04_455
  4. C. De Mas; N. B. Jansen; G. T. Tsao (1988). "Production of optically active 2,3-butanediol by Bacillus polymyxa". Biotechnol. Bioeng. 31 (4): 366–377. doi:10.1002/bit.260310413. PMID   18584617. S2CID   36530193.
  5. "3,5-dinitrobenzoic acid". Combined Chemical Dictionary. Chapman and Hall/CRC Press. 2007.
  6. "Fermentation Derived 2,3-Butanediol", by Marcio Voloch et al. in Comprehensive Biotechnology, Pergamon Press Ltd., England Vol 2, Section 3, p. 933 (1986).
  7. Dai, Jian-Ying; Zhao, Pan; Cheng, Xiao-Long; Xiu, Zhi-Long (2015). "Enhanced Production of 2,3-Butanediol from Sugarcane Molasses". Applied Biochemistry and Biotechnology. 175 (6): 3014–3024. doi:10.1007/s12010-015-1481-x. ISSN   0273-2289. PMID   25586489. S2CID   11287904.
  8. Jansen, Norman B.; Flickinger, Michael C.; Tsao, George T. (1984). "Application of bioenergetics to modelling the microbial conversion of D-xylose to 2,3-butanediol". Biotechnol Bioeng. 26 (6): 573–582. doi:10.1002/bit.260260603. PMID   18553372. S2CID   22878894.
  9. "Rocket fuel made on Mars could propel astronauts back to Earth", Design Products & Applications, accessed 6 December 2021.
  10. Nikitina, Maria A.; Ivanova, Irina I. (2016-02-23). "Conversion of 2,3-Butanediol over Phosphate Catalysts". ChemCatChem. 8 (7): 1346–1353. doi:10.1002/cctc.201501399. ISSN   1867-3880. S2CID   102135312.
  11. Kwok, Kelvin Mingyao; Choong, Catherine Kai Shin; Ong, Daniel Sze Wei; Ng, Joy Chun Qi; Gwie, Chuandayani Gunawan; Chen, Luwei; Borgna, Armando (2017-06-07). "Hydrogen-Free Gas-Phase Deoxydehydration of 2,3-Butanediol to Butene on Silica-Supported Vanadium Catalysts". ChemCatChem. 9 (13): 2443–2447. doi:10.1002/cctc.201700301. ISSN   1867-3880. S2CID   99415384.