Acesulfame potassium

Last updated

Contents

Acesulfame potassium
Acesulfame potassium Structural Formula V1.svg
Acesulfame-k-ball-and-stick.png
Names
IUPAC name
Potassium 6-methyl-2,2-dioxo-2H-1,2λ6,3-oxathiazin-4-olate
Other names
  • Acesulfame K
  • Ace K
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.054.269 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 259-715-3
E number E950 (glazing agents, ...)
PubChem CID
UNII
  • InChI=1S/C4H5NO4S.K/c1-3-2-4(6)5-10(7,8)9-3;/h2H,1H3,(H,5,6);/q;+1/p-1 X mark.svgN
    Key: WBZFUFAFFUEMEI-UHFFFAOYSA-M X mark.svgN
  • InChI=1/C4H5NO4S.K/c1-3-2-4(6)5-10(7,8)9-3;/h2H,1H3,(H,5,6);/q;+1/p-1
    Key: WBZFUFAFFUEMEI-REWHXWOFAT
  • [K+].C\C1=C\C(=O)[N-]S(=O)(=O)O1
Properties
C4H4KNO4S
Molar mass 201.242
Appearancewhite crystalline powder
Density 1.81 g/cm3
Melting point 225 °C (437 °F; 498 K)
270 g/L at 20 °C
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Acesulfame potassium ( UK: /æsɪˈsʌlfm/ , [1] US: /ˌsˈsʌlfm/ AY-see-SUL-faym [2] or /ˌæsəˈsʌlfm/ [1] ), also known as acesulfame K (K is the symbol for potassium) or Ace K, is a synthetic calorie-free sugar substitute (artificial sweetener) often marketed under the trade names Sunett and Sweet One. In the European Union, it is known under the E number (additive code) E950. [3] It was discovered accidentally in 1967 by German chemist Karl Clauss at Hoechst AG (now Nutrinova). [4] Acesulfame potassium is the potassium salt of 6-methyl-1,2,3-oxathiazine-4(3H)-one 2,2-dioxide. It is a white crystalline powder with molecular formula C
4
H
4
KNO
4
S
and a molecular weight of 201.24 g/mol. [5]

Properties

Acesulfame K is 200 times sweeter than sucrose (common sugar), as sweet as aspartame, about two-thirds as sweet as saccharin, and one-third as sweet as sucralose. Like saccharin, it has a slightly bitter aftertaste, especially at high concentrations. Kraft Foods patented the use of sodium ferulate to mask acesulfame's aftertaste. [6] Acesulfame K is often blended with other sweeteners (usually sucralose or aspartame). These blends are reputed to give a more sucrose-like taste whereby each sweetener masks the other's aftertaste, or exhibits a synergistic effect by which the blend is sweeter than its components. [7] Acesulfame potassium has a smaller particle size than sucrose, allowing for its mixtures with other sweeteners to be more uniform. [8]

Unlike aspartame, acesulfame K is stable under heat, even under moderately acidic or basic conditions, allowing it to be used as a food additive in baking, or in products that require a long shelf life. Although acesulfame potassium has a stable shelf life, it can eventually degrade to acetoacetamide, which is toxic in high doses. [9] In carbonated drinks, it is almost always used in conjunction with another sweetener, such as aspartame or sucralose. It is also used as a sweetener in protein shakes and pharmaceutical products, [10] especially chewable and liquid medications, where it can make the active ingredients more palatable. The acceptable daily intake of acesulfame potassium is listed as 15 mg/kg/day. [11]

Acesulfame potassium is widely used in the human diet and excreted by the kidneys. It thus has been used by researchers as a marker to estimate to what degree swimming pools are contaminated by urine. [12]

Other names for acesulfame K are potassium acesulfamate, potassium salt of 6-methyl-1,2,3-oxothiazin-4(3H)-one-2,3-dioxide, and potassium 6-methyl-1,2,3-oxathiazine-4(3H)-one-3-ate-2,2-dioxide.

Effect on body weight

Acesulfame potassium provides a sweet taste with no caloric value. There is no high-quality evidence that using acesulfame potassium as a sweetener affects body weight or body mass index (BMI). [13] [14] [15]

Discovery

Acesulfame potassium was developed after the accidental discovery of a similar compound (5,6-dimethyl-1,2,3-oxathiazin-4(3H)-one 2,2-dioxide) in 1967 by Karl Clauss and Harald Jensen at Hoechst AG. [16] [17] After accidentally dipping his fingers into the chemicals with which he was working, Clauss licked them to pick up a piece of paper. [18] Clauss is the inventor listed on a United States patent issued in 1975 to the assignee Hoechst Aktiengesellschaft for one process of manufacturing acesulfame potassium. [19] Subsequent research showed a number of compounds with the same basic ring structure had different levels of sweetness. 6-methyl-1,2,3-oxathiazine-4(3H)-one 2,2-dioxide had particularly favourable taste characteristics and was relatively easy to synthesize, so it was singled out for further research, and received its generic name (acesulfame-K) from the World Health Organization in 1978. [16] Acesulfame potassium first received approval for table top use in the United States in 1988. [11]

Safety

The United States Food and Drug Administration (FDA) approved its general use as a safe food additive in 1988, [20] and maintains that safety assessment, as of 2023. [21] In a 2000 scientific review, the European Food Safety Authority determined that acesulfame K is safe in typical consumption amounts, and does not increase the risk of diseases. [22]

Related Research Articles

<span class="mw-page-title-main">Aspartame</span> Artificial non-saccharide sweetener

Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. It is a methyl ester of the aspartic acid/phenylalanine dipeptide with brand names NutraSweet, Equal, and Canderel. Aspartame was approved by the US Food and Drug Administration (FDA) in 1974, and then again in 1981, after approval was revoked in 1980.

<span class="mw-page-title-main">Sucralose</span> Non-nutritive sweetener

Sucralose is an artificial sweetener and sugar substitute. As the majority of ingested sucralose is not metabolized by the body, it adds very little food energy. In the European Union, it is also known under the E number E955. It is produced by chlorination of sucrose, selectively replacing three of the hydroxy groups—in the C1 and C6 positions of the fructose portion and the C4 position of the glucose portion—to give a 1,6-dichloro-1,6-dideoxyfructose–4-chloro-4-deoxygalactose disaccharide. Sucralose is about 600 times sweeter than sucrose, 3 times as sweet as both aspartame and acesulfame potassium, and 2 times as sweet as sodium saccharin.

<span class="mw-page-title-main">Sugar substitute</span> Sugarless food additive intended to provide a sweet taste

A sugar substitute is a food additive that provides a sweetness like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie or low-calorie sweetener. Artificial sweeteners may be derived through manufacturing of plant extracts or processed by chemical synthesis. Sugar substitute products are commercially available in various forms, such as small pills, powders, and packets.

<span class="mw-page-title-main">Cyclamate</span> Chemical compound

Cyclamate is an artificial sweetener. It is 30–50 times sweeter than sucrose, making it the least potent of the commercially used artificial sweeteners. It is often used with other artificial sweeteners, especially saccharin; the mixture of 10 parts cyclamate to 1 part saccharin is common and masks the off-tastes of both sweeteners. It is less expensive than most sweeteners, including sucralose, and is stable under heating. Safety concerns led to it being banned in a few countries, though the European Union considers it safe.

<span class="mw-page-title-main">Neohesperidin dihydrochalcone</span> Chemical compound

Neohesperidin dihydrochalcone, sometimes abbreviated to neohesperidin DC or simply NHDC, is an artificial sweetener derived from citrus.

<span class="mw-page-title-main">Saccharin</span> Chemical compound

Saccharin, also called saccharine, benzosulfimide, or E954, or used in saccharin sodium or saccharin calcium forms, is a non-nutritive artificial sweetener. Saccharin is a sultam that is about 500 times sweeter than sucrose, but has a bitter or metallic aftertaste, especially at high concentrations. It is used to sweeten products, such as drinks, candies, baked goods, tobacco products, excipients, and for masking the bitter taste of some medicines. It appears as white crystals and is odorless.

<span class="mw-page-title-main">Pepsi One</span> Brand of cola produced by Pepsi

Pepsi One, corporately styled PEPSI ONE, was a sugar-free cola, marketed by PepsiCo in the United States as an alternative to regular Pepsi and Diet Pepsi.

<span class="mw-page-title-main">Diet soda</span> Type of sugar-free or artificially sweetened soda

Diet or light beverages are generally sugar-free, artificially sweetened beverages with few or no calories. They are marketed for diabetics and other people who want to reduce their sugar and/or caloric intake.

Diet Rite is an American brand of no-calorie soft drinks that was originally distributed by the RC Cola company.

<span class="mw-page-title-main">Neotame</span> Artificial sweetener

Neotame, also known by the brand name Newtame, is a non-caloric artificial sweetener and aspartame analog by NutraSweet. By mass, it is 7,000 to 13,000 times sweeter than sucrose. It has no notable off-flavors when compared to sucrose. It enhances original food flavors. It can be used alone, but is often mixed with other sweeteners to increase their individual sweetness and decrease their off-flavors. It is chemically somewhat more stable than aspartame. Its use can be cost effective in comparison to other sweeteners as smaller amounts of neotame are needed.

<span class="mw-page-title-main">Diet Pepsi</span> Sugar-free, artificially sweetened soda

Diet Pepsi, currently stylised in all caps as Pepsi Diet, is a diet carbonated cola soft drink produced by PepsiCo, introduced in 1964 as a variant of Pepsi with no sugar. First test marketed in 1963 under the name Patio Diet Cola, it was re-branded as Diet Pepsi the following year, becoming the first diet cola to be distributed on a national scale in the United States. In the 1960s and 1970s, its competition consisted of the Coca-Cola Company's subsequently discontinued Tab. The United States represents the largest single market for Diet Pepsi.

<span class="mw-page-title-main">Alitame</span> Chemical compound

Alitame is an aspartic acid-containing dipeptide sweetener. It was developed by Pfizer in the early 1980s and currently marketed in some countries under the brand name Aclame. Most dipeptides are not sweet, but the unexpected discovery of aspartame in 1965 led to a search for similar compounds that shared its sweetness. Alitame is one such second-generation dipeptide sweetener. Neotame, developed by the owners of the NutraSweet brand, is another.

<span class="mw-page-title-main">Lactisole</span> Chemical compound

Lactisole is the sodium salt and commonly supplied form of 2-(4-methoxyphenoxy)propionic acid, a natural carboxylic acid found in roasted coffee beans. Like gymnemic acid, it has the property of masking sweet flavors and is used for this purpose in the food industry.

<span class="mw-page-title-main">Equal (sweetener)</span> Brand of food sweetener

Equal is an American brand of artificial sweetener containing aspartame, acesulfame potassium, dextrose and maltodextrin. It is marketed as a tabletop sweetener by Merisant, a global corporation which also previously owned the well-known NutraSweet brand when it was a subsidiary of Monsanto and which has headquarters in Chicago, Illinois, Switzerland, Mexico, and Singapore. In French Canada, Equal is known as "Égal".

Aftertaste is the taste intensity of a food or beverage that is perceived immediately after that food or beverage is removed from the mouth. The aftertastes of different foods and beverages can vary by intensity and over time, but the unifying feature of aftertaste is that it is perceived after a food or beverage is either swallowed or spat out. The neurobiological mechanisms of taste signal transduction from the taste receptors in the mouth to the brain have not yet been fully understood. However, the primary taste processing area located in the insula has been observed to be involved in aftertaste perception.

<span class="mw-page-title-main">Diet Mountain Dew</span> Carbonated soft drink brand

Diet Mountain Dew is a no-calorie Mountain Dew that was first introduced in 1986. It was formerly known as "Sugar-Free Mountain Dew" until 1986, when it was given its current name. In 2006 Diet Mountain Dew was reformulated with a new "Tuned Up Taste", using a blend of sucralose, aspartame, and acesulfame potassium as sweeteners. The previous formulation was sweetened exclusively with aspartame.

<span class="mw-page-title-main">Cumberland Packing Corporation</span> American food company

Cumberland Packing Corporation is a privately owned company located at 2 Cumberland Street, in Brooklyn, New York City. It was founded in 1945 by Benjamin Eisenstadt and is best known as the manufacturer, distributor, and marketer of Sweet'n Low, a saccharin-based zero-calorie sweetener sold in pink packets.

Fruit2O, formerly manufactured by Kraft, is a lightly flavored, non-carbonated water beverage introduced in 1999. Fruit2o was introduced to compete not only with the bottled water market but also with the soft drink market. Sunny Delight Beverages purchased the Veryfine Products line from Kraft in 2007.

<span class="mw-page-title-main">Aspartame-acesulfame salt</span> Chemical compound

Aspartame-acesulfame salt is an artificial sweetener marketed under the name Twinsweet. It is produced by soaking a 2:1 mixture of aspartame and acesulfame potassium in an acidic solution and allowing it to crystallize; moisture and potassium are removed during this process. It is approximately 350 times as sweet as sucrose. It has been given the E number E962.

References

  1. 1 2 "acesulfame". Oxford English Dictionary. OED. Retrieved 24 July 2022.
  2. "acesulfame–K". Merriam-Webster. Archived from the original on 10 March 2017. Retrieved 31 January 2017.
  3. "Current EU approved additives and their E Numbers". UK: Food Standards Agency. 2012-03-14. Archived from the original on 2013-08-21. Retrieved 2012-08-07.
  4. Clauss, K., Jensen, H. (1973). "Oxathiazinone Dioxides - A New Group of Sweetening Agents". Angewandte Chemie International Edition. 12 (11): 869–876. doi:10.1002/anie.197308691.
  5. Ager, D. J., Pantaleone, D. P., Henderson, S. A., Katritzky, A. R., Prakash, I., Walters, D. E. (1998). "Commercial, Synthetic Nonnutritive Sweeteners" (PDF). Angewandte Chemie International Edition. 37 (13–14): 1802–1817. doi:10.1002/(SICI)1521-3773(19980803)37:13/14<1802::AID-ANIE1802>3.0.CO;2-9. Archived from the original (PDF) on 2008-09-10.
  6. United States Patent 5,336,513 (expired in 2006)
  7. Deis RC (November 2006). "Customizing Sweetness Profiles" (PDF). Food Product Design. Archived from the original (PDF) on 11 August 2014. Retrieved 16 May 2018.
  8. Mullarney, M.; Hancock, B.; Carlson, G.; Ladipo, D.; Langdon, B. "The powder flow and compact mechanical properties of sucrose and three high-intensity sweeteners used in chewable tablets". Int. J. Pharm. 2003, 257, 227–236.
  9. Findikli, Z.; Zeynep, F.; Sifa, T. Determination of the effects of some artificial sweeteners on human peripheral lymphocytes using the comet assay. Journal of toxicology and environmental health sciences 2014, 6, 147–153.
  10. "Home – WHO – Prequalification of Medicines Programme" . Retrieved 2 March 2017.
  11. 1 2 Whitehouse, C.; Boullata, J.; McCauley, L. "The potential toxicity of artificial sweeteners". AAOHN J. 2008, 56, 251–259, quiz 260.
  12. Erika Engelhaupt (March 1, 2017). "Just How Much Pee Is In That Pool?". NPR. Archived from the original on March 1, 2017. Retrieved March 2, 2017.
  13. Miller PE, Perez V (September 2014). "Low-calorie sweeteners and body weight and composition: a meta-analysis of randomized controlled trials and prospective cohort studies". The American Journal of Clinical Nutrition. 100 (3): 765–777. doi:10.3945/ajcn.113.082826. PMC   4135487 . PMID   24944060.
  14. Azad MB, Abou-Setta AM, Chauhan BF, Rabbani R, Lys J, Copstein L, Mann A, Jeyaraman MM, Reid AE, Fiander M, MacKay DS, McGavock J, Wicklow B, Zarychanski R (July 2017). "Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies". CMAJ. 189 (28): E929–E939. doi:10.1503/cmaj.161390. PMC   5515645 . PMID   28716847.
  15. Rogers PJ, Hogenkamp PS, de Graaf C, Higgs S, Lluch A, Ness AR, Penfold C, Perry R, Putz P, Yeomans MR, Mela DJ (September 2015). "Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies". International Journal of Obesity. 40 (3): 381–94. doi:10.1038/ijo.2015.177. PMC   4786736 . PMID   26365102.
  16. 1 2 O'Brien-Nabors, L. (2001). Alternative Sweeteners. New York, NY: Marcel Dekker. p. 13. ISBN   978-0-8247-0437-7.
  17. Williams, R. J., Goldberg, I. (1991). Biotechnology and Food Ingredients. New York: Van Nostrand Reinhold. ISBN   978-0-442-00272-5.
  18. Newton, D. E. (2007). Food Chemistry (New Chemistry). New York: Infobase Publishing. p. 69. ISBN   978-0-8160-5277-6. Archived from the original on 2016-03-05. Retrieved 2017-09-08.
  19. US 3917589,Clauss, K.,"Process for the manufacture of 6-methyl-3,4-dihydro-1,2,3-oxathiazine-4-one-2,2-dioxide",issued 1975
  20. Kroger, M., Meister, K., Kava, R. (2006). "Low-Calorie Sweeteners and Other Sugar Substitutes: A Review of the Safety Issues". Comprehensive Reviews in Food Science and Food Safety . 5 (2): 35–47. doi: 10.1111/j.1541-4337.2006.tb00081.x .
  21. "Aspartame and Other Sweeteners in Food". US Food and Drug Administration. 30 May 2023. Retrieved 30 June 2023.
  22. Scientific Committee on Food (2000). "Opinion - Re-evaluation of acesulfame K with reference to the previous SCF opinion of 1991" (PDF). SCF/CS/ADD/EDUL/194 final. EU Commission. Archived from the original (PDF) on 2008-09-10. Retrieved 2007-10-04.