Packaging engineering

Last updated
Testing modified atmosphere in a plastic bag of carrots Testing MAP for carrots.jpg
Testing modified atmosphere in a plastic bag of carrots
Military shipping container being drop tested Drop test haz-mat.jpg
Military shipping container being drop tested
Engineers developing methods of molding packaging components from renewable resources such as straw Molding packaging from straw, k9837-1.jpg
Engineers developing methods of molding packaging components from renewable resources such as straw
Package design involves interactions of several factors Optimum Packaging Design chart.png
Package design involves interactions of several factors

Packaging engineering, also package engineering, packaging technology and packaging science, is a broad topic ranging from design conceptualization to product placement. All steps along the manufacturing process, and more, must be taken into account in the design of the package for any given product. Package engineering is an interdisciplinary field integrating science, engineering, technology and management to protect and identify products for distribution, storage, sale, and use. It encompasses the process of design, evaluation, and production of packages. It is a system integral to the value chain that impacts product quality, user satisfaction, distribution efficiencies, and safety. Package engineering includes industry-specific aspects of industrial engineering, marketing, materials science, industrial design and logistics. Packaging engineers must interact with research and development, manufacturing, marketing, graphic design, regulatory, purchasing, planning and so on. The package must sell and protect the product, while maintaining an efficient, cost-effective process cycle. [2]

Contents

Engineers develop packages from a wide variety of rigid and flexible materials. Some materials have scores or creases to allow controlled folding into package shapes (sometimes resembling origami [3] ). Packaging involves extrusion, thermoforming, molding and other processing technologies. Packages are often developed for high speed fabrication, filling, processing, and shipment. Packaging engineers use principles of structural analysis and thermal analysis in their evaluations.

Education

Some packaging engineers have backgrounds in other science, engineering, or design disciplines while some have college degrees specializing in this field. [4]

Formal packaging programs might be listed as package engineering, packaging science, packaging technology, etc. BE, BS, MS, M.Tech and PhD programs are available. Students in a packaging program typically begin with generalized science, business, and engineering classes before progressing into industry-specific topics such as shelf life stability, corrugated box design, cushioning, engineering design, labeling regulations, project management, food safety, [5] robotics, RFID tags, quality management, package testing, packaging machinery, [6] [7] tamper-evident methods, [8] recycling, computer-aided design, [9] etc.

See also

Notes

  1. Wood, Marcia (April 2002). "Leftover Straw Gets New Life". Agricultural Research.
  2. Johnson, C (1995). "In-House Testing of Computer Packaging". In Fiedler, R M (ed.). Distribution Packaging Technology. IoPP.
  3. Merali, Zeeya (17 June 2011), "Origami Engineer Flexes to Create Stronger, More Agile Materials", Science, 332 (6036): 1376–1377, Bibcode:2011Sci...332.1376M, doi:10.1126/science.332.6036.1376, PMID   21680824
  4. "Packaging Directory-Packaging Schools". Packaging world. Retrieved 14 Feb 2015.
  5. Lee, Ki-Eun; Kim, An; Lyu, Lee (November 1998). "Effectiveness of modified atmosphere packaging in preserving a prepared ready-to-eat food". Packaging Technology and Science. 21 (7): 417–423. doi:10.1002/pts.821.
  6. Braglia, Maracello; Frosolini, Montanari (January 2003). "Fuzzy logic controller in a packaging plant". Packaging Technology and Science. 16 (1): 21–35. doi:10.1002/pts.608.
  7. Hicks, A. J.; Medland, Mullineux (September 2001). "A constraint-based approach to the modelling and analysis of packaging machinery". Packaging Technology and Science. 14 (5): 183–225. doi:10.1002/pts.553.
  8. Johnston, R.G. (July 1997). "Effective Vulnerability Assessment of Tamper-Indicating Seals". Journal of Testing and Evaluation. 25 (4): 451. doi:10.1520/jte11883j. S2CID   111289045.
  9. Han, Jongkoo; Park (January 2007). "Finite element analysis of vent/hand hole designs for corrugated fibreboard boxes". Packaging Technology and Science. 20 (1): 39–47. doi:10.1002/pts.741.

Bibliography

Related Research Articles

<span class="mw-page-title-main">Mechanical engineering</span> Engineering discipline

Mechanical engineering is the study of physical machines that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering branches.

<span class="mw-page-title-main">Corrugated fiberboard</span> Composite paper material

Corrugated fiberboard or corrugated cardboard is a type of packaging material consisting of a fluted corrugated sheet and one or two flat linerboards. It is made on "flute lamination machines" or "corrugators" and is used for making corrugated boxes. The corrugated medium sheet and the linerboard(s) are made of kraft containerboard, a paperboard material usually over 0.25 millimetres (0.01 in) thick.

<span class="mw-page-title-main">Packaging and labeling</span> Enclosure or protection of products for distribution, storage, and sale

Packaging is the science, art and technology of enclosing or protecting products for distribution, storage, sale, and use. Packaging also refers to the process of designing, evaluating, and producing packages. Packaging can be described as a coordinated system of preparing goods for transport, warehousing, logistics, sale, and end use. Packaging contains, protects, preserves, transports, informs, and sells. In many countries it is fully integrated into government, business, institutional, industrial, and personal use.

A design engineer is an engineer focused on the engineering design process in any of the various engineering disciplines and design disciplines like Human-Computer Interaction. Design engineers tend to work on products and systems that involve adapting and using complex scientific and mathematical techniques. The emphasis tends to be on utilizing engineering physics and other applied sciences to develop solutions for society.

<span class="mw-page-title-main">Closure (container)</span> Devices and techniques used to close or seal a bottle, jug, jar, tube, can, etc.

A closure is a device used to close or seal a container such as a bottle, jug, jar, tube, or can. A closure may be a cap, cover, lid, plug, liner, or the like. The part of the container to which the closure is applied is called the finish.

<span class="mw-page-title-main">Computer-aided production engineering</span>

Computer-aided production engineering (CAPE) is a relatively new and significant branch of engineering. Global manufacturing has changed the environment in which goods are produced. Meanwhile, the rapid development of electronics and communication technologies has required design and manufacturing to keep pace.

<span class="mw-page-title-main">Food packaging</span> Enclosure and protection of nutritional substances for distribution and sale

Food packaging is a packaging system specifically designed for food and represents one of the most important aspects among the processes involved in the food industry, as it provides protection from chemical, biological and physical alterations. The main goal of food packaging is to provide a practical means of protecting and delivering food goods at a reasonable cost while meeting the needs and expectations of both consumers and industries. Additionally, current trends like sustainability, environmental impact reduction, and shelf-life extension have gradually become among the most important aspects in designing a packaging system.

<span class="mw-page-title-main">Package cushioning</span> Protective packaging

Package cushioning is used to protect items during shipment. Vibration and impact shock during shipment and loading/unloading are controlled by cushioning to reduce the chance of product damage.

<span class="mw-page-title-main">Manufacturing engineering</span> Branch of engineering

Manufacturing engineering or production engineering is a branch of professional engineering that shares many common concepts and ideas with other fields of engineering such as mechanical, chemical, electrical, and industrial engineering. Manufacturing engineering requires the ability to plan the practices of manufacturing; to research and to develop tools, processes, machines and equipment; and to integrate the facilities and systems for producing quality products with the optimum expenditure of capital. Transitioning the product to manufacture it in volumes is considered part of product engineering.

<span class="mw-page-title-main">Folding carton</span> Type of paperboard packaging

The folding carton created the packaging industry as it is known today, beginning in the late 19th century. The process involves folding carton made of paperboard that is printed, laminated, cut, then folded and glued. The cartons are shipped flat to a packager, which has its own machinery to fold the carton into its final shape as a container for a product. An example of such a carton is a cereal box.

Insulated shipping containers are a type of packaging used to ship temperature sensitive products such as foods, pharmaceuticals, organs, blood, biologic materials, vaccines and chemicals. They are used as part of a cold chain to help maintain product freshness and efficacy. The term can also refer to insulated intermodal containers or insulated swap bodies.

<span class="mw-page-title-main">Industrial engineering</span> Branch of engineering which deals with the optimization of complex processes or systems

Industrial engineering is an engineering profession that is concerned with the optimization of complex processes, systems, or organizations by developing, improving and implementing integrated systems of people, money, knowledge, information and equipment. Industrial engineering is central to manufacturing operations.

<span class="mw-page-title-main">Corrugated box design</span> Process of matching design factors for corrugated fiberboard boxes

Corrugated box design is the process of matching design factors for corrugated fiberboard boxes with the functional physical, processing and end-use requirements. Packaging engineers work to meet the performance requirements of a box while controlling total costs throughout the system. Corrugated boxes are shipping containers used for transport packaging and have important functional and economic considerations.

<span class="mw-page-title-main">Drug packaging</span> Packaging for pharmaceutical preparations

Pharmaceutical packaging is the packages and the packaging processes for pharmaceutical preparations. It involves all of the operations from production through drug distribution channels to the end consumer.

<span class="mw-page-title-main">Package testing</span>

Package testing or packaging testing involves the measurement of a characteristic or property involved with packaging. This includes packaging materials, packaging components, primary packages, shipping containers, and unit loads, as well as the associated processes.

Reusable packaging is manufactured of durable materials and is specifically designed for multiple trips and extended life. A reusable package or container is "designed for reuse without impairment of its protective function." The term returnable is sometimes used interchangeably but it can also include returning packages or components for other than reuse: recycling, disposal, incineration, etc. Typically, the materials used to make returnable packaging include steel, wood, polypropylene sheets or other plastic materials.

Industrial and production engineering (IPE) is an interdisciplinary engineering discipline that includes manufacturing technology, engineering sciences, management science, and optimization of complex processes, systems, or organizations. It is concerned with the understanding and application of engineering procedures in manufacturing processes and production methods. Industrial engineering dates back all the way to the industrial revolution, initiated in 1700s by Sir Adam Smith, Henry Ford, Eli Whitney, Frank Gilbreth and Lilian Gilbreth, Henry Gantt, F.W. Taylor, etc. After the 1970s, industrial and production engineering developed worldwide and started to widely use automation and robotics. Industrial and production engineering includes three areas: Mechanical engineering, industrial engineering, and management science.

<span class="mw-page-title-main">Packaging machinery</span>

Packaging machinery is used throughout all packaging operations, involving primary packages to distribution packs. This includes many packaging processes: fabrication, cleaning, filling, sealing, combining, labeling, overwrapping, palletizing.

<span class="mw-page-title-main">Package handle</span> Packaging component

Package handles, or carriers, are used to help people use packaging. They are designed to simplify and to improve the ergonomics of lifting and carrying packages. Handles on consumer packages add convenience and help facilitate use and pouring. The effect of handles on package material costs and the packaging line efficiencies are also critical. A handle can be defined as “an accessory attached to a container or part for the purpose of holding or carrying.” Sometimes a handle can be used to hang a package for dispensing or use.

<span class="mw-page-title-main">Evidence packaging</span> Specialized packaging for physical evidence

Evidence packaging involves the specialized packaging methods and materials used for physical evidence. Items need to be collected at a crime scene or a fire scene, forwarded to a laboratory for forensic analysis, put in secure storage, and used in a courtroom, all while maintaining the chain of custody. Items might include DNA, drugs, hair samples, body parts, blood samples, sperm, knives, vomit, firearms, bullets, fire accelerants, computers, checkbooks, etc.