Oxygen scavenger

Last updated
An oxygen absorber Nippon Kayaku Food Techno oxygen absorber 20061022.jpg
An oxygen absorber
The contents of an oxygen absorber from a packet of beef jerky Mitsubishi Gas Chemical oxygen absorber Ageless contents 20090104.jpg
The contents of an oxygen absorber from a packet of beef jerky

Oxygen scavengers or oxygen absorbers are added to enclosed packaging to help remove or decrease the level of oxygen in the package. They are used to help maintain product safety and extend shelf life. [1] There are many types of oxygen absorbers available to cover a wide array of applications. [2] [3]

Contents

The components of an oxygen absorber vary according to intended use, the water activity of the product being preserved, and other factors. Often the oxygen absorber or scavenger is enclosed in a porous sachet or packet but it can also be part of packaging films and structures. [4] Others are part of a polymer structure. [5]

Oxygen absorbing chemicals are also commonly added to boiler feedwater used in boiler systems, to reduce corrosion of components within the system. [6]

Mechanism

The first patent for an oxygen scavenger used an alkaline solution of pyrogallic acid in an air-tight vessel. [7] [8]

Modern scavenger sachets use a mixture of iron powder and sodium chloride. [8] Often activated carbon is also included as it adsorbs some other gases and many organic molecules, further preserving products and removing odors.

When an oxygen absorber is removed from its protective packaging, the moisture in the surrounding atmosphere begins to permeate into the iron particles inside of the absorber sachet. Moisture activates the iron, and it oxidizes to form iron oxide. Typically, there is required to be at least 65% relative humidity in the surrounding atmosphere before the rusting process can begin. To assist in the process of oxidation, sodium chloride is added to the mixture, acting as a catalyst or activator, causing the iron powder to be able to oxidize even with relatively low humidity. As oxygen is consumed to form iron oxide the level of oxygen in the surrounding atmosphere is reduced. Absorber technology of this type may reduce the oxygen level in the surrounding atmosphere to below 0.01%. [2] [3] Complete oxidation of 1 g of iron can remove 300 cm3 of oxygen in standard conditions. Though other technologies can remove more, iron is the most useful as it does not cause odor like sulfur compounds or passivate like aluminium compounds. Many other alternatives are not food safe. [8] The moisture requirement of iron-based scavengers makes them ineffective in moisture sensitive applications.

The performance of oxygen scavengers is affected by ambient temperature and relative humidity. [9] Newer packaging technologies may use oxygen scavenging polymers to prevent accidental ingestion of oxygen scavengers. [8]

Non-ferrous oxygen scavengers

While most standard oxygen scavengers contain ferrous carbonate and a metal halide catalyst, there are several non-ferrous variants, such as ascorbate with sodium hydrogen carbonate, among others available. [10]

Typical reasons to use a non-ferrous variant would include the packaging of products intended for international shipping where metal detection would pose a problem; a desire to reduce the odor associated with ferrous carbonate; or dietary products where contact with iron should be avoided. [11]

Ascorbic acid is often used to scavenge oxygen for generation of anaerobic environments for microbiology. [12] [13]

Benefits of oxygen scavengers

Oxygen scavenging technology can quickly reduce oxygen levels in sealed containers to below 0.01%.

Typical uses

Sachets

Plastic sachets offer greater protection than paper as they are not prone to disintegrating in products with high fat contents.

See also

Related Research Articles

<span class="mw-page-title-main">Chemistry of ascorbic acid</span> Chemical compound

Ascorbic acid is an organic compound with formula C
6
H
8
O
6
, originally called hexuronic acid. It is a white solid, but impure samples can appear yellowish. It dissolves freely in water to give mildly acidic solutions. It is a mild reducing agent.

<span class="mw-page-title-main">Rust</span> Type of iron oxide

Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe2O3·nH2O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH)3), and is typically associated with the corrosion of refined iron.

In chemistry, a reducing agent is a chemical species that "donates" an electron to an electron recipient.

Rancidification is the process of complete or incomplete autoxidation or hydrolysis of fats and oils when exposed to air, light, moisture, or bacterial action, producing short-chain aldehydes, ketones and free fatty acids.

<span class="mw-page-title-main">Silica gel</span> Porous form of silicon dioxide

Silica gel is an amorphous and porous form of silicon dioxide (silica), consisting of an irregular tridimensional framework of alternating silicon and oxygen atoms with nanometer-scale voids and pores. The voids may contain water or some other liquids, or may be filled by gas or vacuum. In the last case, the material is properly called silica xerogel.

<span class="mw-page-title-main">Desiccant</span> Substance used to induce or sustain dryness

A desiccant is a hygroscopic substance that is used to induce or sustain a state of dryness (desiccation) in its vicinity; it is the opposite of a humectant. Commonly encountered pre-packaged desiccants are solids that absorb water. Desiccants for specialized purposes may be in forms other than solid, and may work through other principles, such as chemical bonding of water molecules. They are commonly encountered in foods to retain crispness. Industrially, desiccants are widely used to control the level of water in gas streams.

The pedosphere is the outermost layer of the Earth that is composed of soil and subject to soil formation processes. It exists at the interface of the lithosphere, atmosphere, hydrosphere and biosphere. The pedosphere is the skin of the Earth and only develops when there is a dynamic interaction between the atmosphere, biosphere, lithosphere and the hydrosphere. The pedosphere is the foundation of terrestrial life on Earth.

<span class="mw-page-title-main">Potassium ferrate</span> Chemical compound

Potassium ferrate is an inorganic compound with the formula K2FeO4. It is the potassium salt of ferric acid. Potassium ferrate is a powerful oxidizing agent with applications in green chemistry, organic synthesis, and cathode technology.

<span class="mw-page-title-main">Modified atmosphere</span>

Modified atmosphere packaging (MAP) is the practice of modifying the composition of the internal atmosphere of a package in order to improve the shelf life. The need for this technology for food arises from the short shelf life of food products such as meat, fish, poultry, and dairy in the presence of oxygen. In food, oxygen is readily available for lipid oxidation reactions. Oxygen also helps maintain high respiration rates of fresh produce, which contribute to shortened shelf life. From a microbiological aspect, oxygen encourages the growth of aerobic spoilage microorganisms. Therefore, the reduction of oxygen and its replacement with other gases can reduce or delay oxidation reactions and microbiological spoilage. Oxygen scavengers may also be used to reduce browning due to lipid oxidation by halting the auto-oxidative chemical process. Besides, MAP changes the gaseous atmosphere by incorporating different compositions of gases.

<span class="mw-page-title-main">Sodium erythorbate</span> Chemical compound

Sodium erythorbate (C6H7NaO6) is a food additive used predominantly in meats, poultry, and soft drinks. Chemically, it is the sodium salt of erythorbic acid.

<span class="mw-page-title-main">Deaerator</span> Device that removes dissolved gases from liquids

A deaerator is a device that is used for the removal of dissolved gases like oxygen from a liquid.

<span class="mw-page-title-main">Iron-oxidizing bacteria</span> Bacteria deriving energy from dissolved iron

Iron-oxidizing bacteria are chemotrophic bacteria that derive energy by oxidizing dissolved iron. They are known to grow and proliferate in waters containing iron concentrations as low as 0.1 mg/L. However, at least 0.3 ppm of dissolved oxygen is needed to carry out the oxidation.

A scavenger in chemistry is a chemical substance added to a mixture in order to remove or de-activate impurities and unwanted reaction products, for example oxygen, to make sure that they will not cause any unfavorable reactions. Their use is wide-ranged:

<span class="mw-page-title-main">Iron(II) carbonate</span> Chemical, compound of iron carbon and oxygen

Iron(II) carbonate, or ferrous carbonate, is a chemical compound with formula FeCO
3
, that occurs naturally as the mineral siderite. At ordinary ambient temperatures, it is a green-brown ionic solid consisting of iron(II) cations Fe2+
and carbonate anions CO2−
3
. The compound crystallizes in the same motif as calcium carbonate. In this motif, the carbonate dianion is nearly planar. Its three oxygen atoms each bind to two Fe(II) centers, such that the Fe has an octahedral coordination geometry.

A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.

<span class="mw-page-title-main">Boiler feedwater</span> Water supplied to a boiler

Boiler feedwater is the water which is supplied to a boiler. The feed water is put into the steam drum from a feed pump. In the steam drum the feed water is then turned into steam from the heat. After the steam is used, it is then dumped to the main condenser. From the condenser, it is then pumped to the deaerated feed tank. From this tank it then goes back to the steam drum to complete its cycle. The feedwater is never open to the atmosphere. This cycle is known as a closed system or Rankine cycle.

<span class="mw-page-title-main">Dough conditioner</span> Substance added to bread dough to strengthen its texture

A dough conditioner, flour treatment agent, improving agent or bread improver is any ingredient or chemical added to bread dough to strengthen its texture or otherwise improve it in some way. Dough conditioners may include enzymes, yeast nutrients, mineral salts, oxidants and reductants, bleaching agents and emulsifiers. They are food additives combined with flour to improve baking functionality. Flour treatment agents are used to increase the speed of dough rising and to improve the strength and workability of the dough.

<span class="mw-page-title-main">Oxygen compounds</span> Different oxidation states of Oxygen

The oxidation state of oxygen is −2 in almost all known compounds of oxygen. The oxidation state −1 is found in a few compounds such as peroxides. Compounds containing oxygen in other oxidation states are very uncommon: −12 (superoxides), −13 (ozonides), 0, +12 (dioxygenyl), +1, and +2.

Black powder is an industry name for the abrasive, reactive particulate contamination present in all gas and hydrocarbon fluid transmission lines. Black powder ranges from light brown to black, and the mineral makeup varies per production field around the world.

The terms active packaging, intelligent packaging, and smart packaging refer to amplified packaging systems used with foods, pharmaceuticals, and several other types of products. They help extend shelf life, monitor freshness, display information on quality, improve safety, and improve convenience.

References

  1. Miltz, J.; Perry, M. (2005). "Evaluation of the performance of iron-based oxygen scavengers, with comments on their optimal applications". Packaging Technology and Science. 18: 21–27. doi:10.1002/pts.671. S2CID   97578421.
  2. 1 2 Tewari, G.; Jayas, D. S.; Jeremiah, L. E.; Holley, R. A. (2002). "Absorption kinetics of oxygen scavengers". International Journal of Food Science and Technology. 37 (2): 209–217. doi:10.1046/j.1365-2621.2002.00558.x.
  3. 1 2 MacDonald, Jameyson. "Oxygen Absorbers Facts" (PDF). Archived (PDF) from the original on 2 December 2020. Retrieved 3 December 2013.
  4. Ferrari, M C; S. Carranzaa; R.T. Bonnecazea; K.K. Tunga; B.D. Freemana; D.R. Paula (2009). "Modeling of oxygen scavenging for improved barrier behavior: Blend films" (PDF). Journal of Membrane Science. 329 (1–2): 183–192. doi:10.1016/j.memsci.2008.12.030. Archived from the original (PDF) on 27 September 2013. Retrieved 20 September 2013.
  5. US 5660761,Katsumoto, Kiyoshi,"Oxygen scavenging layer consisting of oxidizable compound, second, separate layer consisting of oxidation catalyst",published 26 Aug 1997
  6. Shokre, A (2023). "Principles, operational challenges, and perspectives in boiler feedwater treatment process". Environmental Advances. 48. Bibcode:2023EnvAd..1300389S. doi: 10.1016/j.envadv.2023.100389 . Retrieved 14 October 2023.
  7. US 96871,Virgil W. Blanchard,"Improvement in preserving fruits, meats and other substances."
  8. 1 2 3 4 Yam, K. L., ed. (2009). Encyclopedia of Packaging Technology. John Wiley & Sons. pp. 842–850. ISBN   9780470087046.
  9. Braga, L. R.; Sarantópoulos, C. I. G. L.; Peres, L.; Braga, J. W. B. (2010). "Evaluation of absorption kinetics of oxygen scavenger sachets using response surface methodology". Packaging Technology and Science. 23 (6): 351–361. doi:10.1002/pts.905. S2CID   96850090.
  10. Kerry, Joseph; Butler, Paul (May 23, 2008). Smart Packaging Technologies for Fast Moving Consumer Goods. Wiley & Sons. p. 1.
  11. Brody, Aaron L.; Strupinsky, E. P.; Kline, Lauri R. (June 8, 2001). Active Packaging for Food Applications. CRC Press. p. 20.
  12. Dave, Rajiv I.; Shah, Nagendra P (1996-10-19). "Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures". International Dairy Journal. 7 (6–7): 435–443. doi:10.1016/S0958-6946(97)00026-5.
  13. Niki, E (1991). "Action of ascorbic acid as a scavenger of active and stable oxygen radicals". The American Journal of Clinical Nutrition. 54 (6 Suppl): 1119S –1124S. doi: 10.1093/ajcn/54.6.1119s . PMID   1962557.