Seed-counting machine

Last updated

Seed-counting machine
Data Count&Fill S60 seed counter.jpg
A seed counter and packager
Industry Agriculture
ApplicationCounting seeds

Seed counting machines count seeds for research and packaging purposes. The machines typically provide total counts of seeds or batch sizes for packaging.

Contents

Background

The first seed counters were developed to count legumes and other seeds which were large. [1]

Traditionally, the seed packaging industry packed seeds by weight but sold them by number. In order to assure the correct quantity of seeds, the distributors added a safety margin to the packed weight, like a bakers' dozen. This safety margin increased cost. By counting the seeds, the margin of error could be reduced and so costs reduced. [2]

History

1928 United States Department of Agriculture publication regarding seed counters A seed counter (IA seedcounter53brow).pdf
1928 United States Department of Agriculture publication regarding seed counters

Originally people counted seeds by hand, or used a trip board. The first seed-counting machine was the vibratory mechanical seed counter. Modern day electronic seed counters are faster and more accurate. [3] A color-image-based seed sorter was developed which can sort various things by their color. [4]

In 1929 the US Bureau of Plant Industry worked with several seed companies to perfect a seed counter. [5] In 1962 an electric seed counter was developed by the USDA's Agricultural Marketing Service. The electronic counter operation involved the a vibrating the seeds so that they move to the edge of the counting machine. [1]

The machine will pay for itself over the labor intensive tedious task of manually counting seeds, which is necessarily characterized by human error. By contrast, the new devices, even in the early 1960s, boasted increased speed and “about 1 error in counting 10,000 seeds counted.” The accuracy helps lessen the need to build in safety margins for quantity; and the costs of the machinery can be more than paid for by reduced labor costs. [2]

In the 1970s other electronic seed counting advancements included an electric eye to count the seeds. Seed counting still involved vibrating the seed, but now the seed would fall through a seed hole. [6]

If the items are put onto the conveyor in a single file, then a simple counting mechanism may provide satisfactory results. However, such a mechanism is inherently slower than if the items were freely placed on the conveyor without posing such limitations. Thus, in the 2000s other parallel counting of multiple objects evolved, including devices that use multiple electromagnetic energy sources and receptors. [7]

Technology

At one time, the methodology included use of vacuum tubes, vacuum pumps, a light source and a photo transistor. The size needed to be adjusted so only one seed passes through at a time. To be useful, batch counters need to be commercially available. A single preset count facility is a plus, as is “adequate count capacity, the ability to provide external power supplies and [control of] ... the means to stop the picking up and counting of seeds.” [8]

In commercial operations, it is important for the counter to be automatic and accurate. For example, one commercial counter is capable of measuring the hundredth/thousandth grain weight for seeds, tablets, pearls, and small components. It adopts far-infrared area sensor, and a large enough photosensitive area, "suitable for the sensitivity of all crops (millet-peanut)." Blockages or splashes are to be avoided. Adaptable speed variation adjustment helps "solve the contradiction between speed and accuracy, and ensure error-free counting (counting error of 0/1000)" Manual feeding vs automatic cup changing "improve the counting efficiency, reduce labor intensity." Automatic discharge can obviate demands for the operator to constantly feed the vibrating plate. One counter is so fast that Millet "counting can reach 2000 grains/min, and the wheat and rice counting" Suitability of the vibrating plate for different seeds is a consideration. It is useful to have an adjustable baffle at the exit of the bowl "according to the diameter of the seeds (workpieces), only one seed (workpiece) at a time, not side by side, for all large and small seeds." [9]

Some seed counters use laser light. [10]

In counting, it is important to position one seed at a time by manipulating slit width when using a Photoelectric seed counter. [11] It can be an integral part of a Seed drill.[ citation needed ]

Some are able to handle up to 23 sample containers. They can do this while maintaining notable accuracy. [upper-alpha 1] General purpose electronic seed counters usually count seeds during free fall. They have achieved satisfactory error rates. [10] For example: "Counting errors of less than 0.4% at counting speeds of 400 to 1,180 seeds/min were obtained for seeds of nine different species ranging in size from corn (Zea mays L.) to trefoil (Lotus corniculatus L.). Under some conditions, the seed dispenser, a vibratory small parts feeder, segregated wheat kernels (Triticum aestivum L.) into weight classes dispensing heavier kernels first into the counting system." [12] [13]

See also

Related Research Articles

<span class="mw-page-title-main">Frequency</span> Number of occurrences or cycles per unit time

Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as temporal frequency for clarity, and is distinct from angular frequency. Frequency is measured in hertz (Hz) which is equal to one event per second. The period is the interval of time between events, so the period is the reciprocal of the frequency.

<span class="mw-page-title-main">Lathe</span> Machine tool which rotates the work piece on its axis

A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.

<span class="mw-page-title-main">Sampling (statistics)</span> Selection of data points in statistics.

In statistics, quality assurance, and survey methodology, sampling is the selection of a subset of individuals from within a statistical population to estimate characteristics of the whole population. Statisticians attempt to collect samples that are representative of the population in question. Sampling has lower costs and faster data collection than measuring the entire population and can provide insights in cases where it is infeasible to measure an entire population.

<span class="mw-page-title-main">Forging</span> Metalworking process

Forging is a manufacturing process involving the shaping of metal using localized compressive forces. The blows are delivered with a hammer or a die. Forging is often classified according to the temperature at which it is performed: cold forging, warm forging, or hot forging. For the latter two, the metal is heated, usually in a forge. Forged parts can range in weight from less than a kilogram to hundreds of metric tons. Forging has been done by smiths for millennia; the traditional products were kitchenware, hardware, hand tools, edged weapons, cymbals, and jewellery. Since the Industrial Revolution, forged parts are widely used in mechanisms and machines wherever a component requires high strength; such forgings usually require further processing to achieve a finished part. Today, forging is a major worldwide industry.

<span class="mw-page-title-main">Rapeseed</span> Oilseed, Brassica, food, feed, industry

Rapeseed, also known as rape, or oilseed rape, is a bright-yellow flowering member of the family Brassicaceae, cultivated mainly for its oil-rich seed, which naturally contains appreciable amounts of erucic acid. The term canola denotes a group of rapeseed cultivars which were bred to have very low levels of erucic acid and are especially prized for use as human and animal food. Rapeseed is the third-largest source of vegetable oil and the second-largest source of protein meal in the world.

<span class="mw-page-title-main">Drilling</span> Cutting process that uses a drill bit to cut a circular hole into the workpiece

Drilling is a cutting process where a drill bit is spun to cut a hole of circular cross-section in solid materials. The drill bit is usually a rotary cutting tool, often multi-point. The bit is pressed against the work-piece and rotated at rates from hundreds to thousands of revolutions per minute. This forces the cutting edge against the work-piece, cutting off chips (swarf) from the hole as it is drilled.

<span class="mw-page-title-main">Weighing scale</span> Instrument to measure the weight of an object

A scale or balance is a device used to measure weight or mass. These are also known as mass scales, weight scales, mass balances, and weight balances.

A reamer is a type of rotary cutting tool used in metalworking. Precision reamers are designed to enlarge the size of a previously formed hole by a small amount but with a high degree of accuracy to leave smooth sides. There are also non-precision reamers which are used for more basic enlargement of holes or for removing burrs. The process of enlarging the hole is called reaming. There are many different types of reamer and they may be designed for use as a hand tool or in a machine tool, such as a milling machine or drill press.

<span class="mw-page-title-main">Electrochemical machining</span>

Electrochemical machining (ECM) is a method of removing metal by an electrochemical process. It is normally used for mass production and is used for working extremely hard materials or materials that are difficult to machine using conventional methods. Its use is limited to electrically conductive materials. ECM can cut small or odd-shaped angles, intricate contours or cavities in hard and exotic metals, such as titanium aluminides, Inconel, Waspaloy, and high nickel, cobalt, and rhenium alloys. Both external and internal geometries can be machined.

<span class="mw-page-title-main">Calipers</span> Tool used to measure dimensions of an object

A caliper is a device used to measure the dimensions of an object.

<span class="mw-page-title-main">Turning</span> Machining process

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.

<span class="mw-page-title-main">Metal lathe</span> Machine tool used to remove material from a rotating workpiece

In machining, a metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.

<span class="mw-page-title-main">Boring (manufacturing)</span> Process of enlarging an already-drilled hole with a single-point cutting tool

In machining, boring is the process of enlarging a hole that has already been drilled by means of a single-point cutting tool, such as in boring a gun barrel or an engine cylinder. Boring is used to achieve greater accuracy of the diameter of a hole, and can be used to cut a tapered hole. Boring can be viewed as the internal-diameter counterpart to turning, which cuts external diameters.

<span class="mw-page-title-main">Shale shakers</span>

Shale shakers are components of drilling equipment used in many industries, such as coal cleaning, mining, oil and gas drilling.They are the first phase of a solids control system on a drilling rig, and are used to remove large solids (cuttings) from the drilling fluid ("mud").

<span class="mw-page-title-main">Fixture (tool)</span> Device for firmly holding a workpiece during manufacturing

A fixture is a work-holding or support device used in the manufacturing industry. Fixtures are used to securely locate and support the work, ensuring that all parts produced using the fixture will maintain conformity and interchangeability. Using a fixture improves the economy of production by allowing smooth operation and quick transition from part to part, reducing the requirement for skilled labor by simplifying how workpieces are mounted, and increasing conformity across a production run.

<span class="mw-page-title-main">Ultrasonic machining</span>

Ultrasonic machining is a subtractive manufacturing process that removes material from the surface of a part through high frequency, low amplitude vibrations of a tool against the material surface in the presence of fine abrasive particles. The tool travels vertically or orthogonal to the surface of the part at amplitudes of 0.05 to 0.125 mm. The fine abrasive grains are mixed with water to form a slurry that is distributed across the part and the tip of the tool. Typical grain sizes of the abrasive material range from 100 to 1000, where smaller grains produce smoother surface finishes.

<span class="mw-page-title-main">Honing (metalworking)</span> Production of a precise surface on a metal workpiece

Honing is an abrasive machining process that produces a precision surface on a metal workpiece by scrubbing an abrasive grinding stone or grinding wheel against it along a controlled path. Honing is primarily used to improve the geometric form of a surface, but can also improve the surface finish.

<span class="mw-page-title-main">Bowl feeder</span> Vibrating device for orienting small parts

Vibratory bowl feeders, also known as a bowl feeders, are common devices used to orient and feed individual component parts for assembly on industrial production lines. They are used when a randomly sorted bulk package of small components must be fed into another machine one-by-one, oriented in a particular direction.

Vibratory Stress Relief, often abbreviated VSR, is a non-thermal stress relief method used by the metal working industry to enhance the dimensional stability and mechanical integrity of castings, forgings, and welded components, chiefly for two categories of these metal workpieces:

<span class="mw-page-title-main">Rapeseed oil</span> Vegetable oil

Rapeseed oil is one of the oldest known vegetable oils. There are both edible and industrial forms produced from rapeseed, the seed of several cultivars of the plant family Brassicaceae. Historically, it was eaten in limited quantities due to high levels of erucic acid, which is damaging to the cardiac muscle of animals and imparts a bitter taste, and glucosinolates, which made it less nutritious in animal feed. Rapeseed oil can contain up to 54% erucic acid.

References

Notes

  1. "An automatic seed counter for counting seeds from 1–23 sample containers into 1–23 collecting containers is described. The counter can count and collect either a predetermined number of seeds from each sample or the total number of seeds in each sample. Although the instrument was designed for rapeseed, the counter can accommodate seed species ranging in size from 0·6 to 12·5 mm. For large samples (> 100 seeds), the count accuracy varies from ±1% to ±2%, depending on the size and shape of the seed. When counting in the predetermined mode with small samples (<100 seeds) of small seeds, the count accuracy is reduced to ±3%. Accuracy when counting rapeseed is within ±1·16 seeds standard deviation for sample sizes within the range 10–100 seeds, in either predetermined or total count mode. At present this equipment is not suitable for counting seeds from breeder selections because of the possibility of transferring a seed or seeds from one sample to another; minor changes to the control circuit should make this feasible. It is, however, suitable for the majority of counting requirements for a broad range of seeds. [10]

Citations

  1. 1 2 "Electronic Counter for Seeds Developed". San Antonio Express . May 24, 1962. Retrieved October 27, 2021.
  2. 1 2 "The Future for Food Retailing". Agricultural Marketing. United States: Agricultural Marketing Service: 7. 1961.
  3. "Advancements in Seed Counting Technologies Prompt Committee to Pursue Rule Change Proposal". Iowa State University Seed Science Center . Retrieved October 27, 2021.
  4. "Savvy Seed Sorter Gains New Fans, USDA ARS Online Magazine Vol. 61, No. 6". Agricultural Research Service . July 2013. Retrieved October 27, 2021.
  5. "Colorado's Expert Protects Growers Against Poor Seed". The Bismarck Tribune . April 13, 1931. Retrieved October 27, 2021.
  6. "Improvements, Additions Set at Pioneer Research Station". Huron Daily Plainsman . February 25, 1973. Retrieved October 27, 2021.
  7. "Method and apparatus for dispensing items". Google patents. United States Patent and Trademark Office . Retrieved September 7, 2022.{{cite web}}: CS1 maint: url-status (link)PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. Carlow, C.A. (June 1968). "Note: An electronic seed counter" (PDF). Journal of Agricultural Engineering Research . 13 (2): 187–189. doi:10.1016/0021-8634(68)90094-2. ISSN   0021-8634 via Elsevier.
  9. "DC-3 Automatic Electronic Seed Counting Machine for Seeds Medical Particles". Gemstone. Retrieved October 30, 2021.
  10. 1 2 3 Reid, W.S.; Buckley, D.J. (September 1974). "A laser light source seed counter". Journal of Agricultural Engineering Research. 19 (3): 265–269. doi:10.1016/0021-8634(74)90065-1.
  11. Reid, W.S.; Buckley, D.J.; Mason, W. (June 1976). "A photoelectric seed counting detector". Journal of Agricultural Engineering Research. 21 (2): 213–215. doi:10.1016/0021-8634(76)90077-9 via ScienceDirect.
  12. Reid, W.S.; Buckley, D.J.; Downey, R.K. (March 1983). "A semi-automatic seed counter". Journal of Agricultural Engineering Research. 28 (2): 89–95. doi:10.1016/0021-8634(83)90078-1 via ScienceDirect.
  13. McLaughlin, N. B.; Giesbrecht, J.; Bligh, D. F. (April 1976). "Design and Performance of an Electronic Seed Counter". Canadian Journal of Plant Science . 56 (2): 351–355. doi:10.4141/cjps76-053.