Seed drill

Last updated • 8 min readFrom Wikipedia, The Free Encyclopedia
Filling a feed-box of a seed drill, Canterbury Agricultural College farm, 1948 7263 Canterbury Agricultural College farm.jpg
Filling a feed-box of a seed drill, Canterbury Agricultural College farm, 1948

A seed drill is a device used in agriculture that sows seeds for crops by positioning them in the soil and burying them to a specific depth while being dragged by a tractor. This ensures that seeds will be distributed evenly.

Contents

The seed drill sows the seeds at the proper seeding rate and depth, ensuring that the seeds are covered by soil. This saves them from being eaten by birds and animals, or being dried up due to exposure to the sun. With seed drill machines, seeds are distributed in rows; this allows plants to get sufficient sunlight, nutrients from the soil.

Before the introduction of the seed drill, most seeds were planted by hand broadcasting, an imprecise and wasteful process with a poor distribution of seeds and low productivity. Use of a seed drill can improve the ratio of crop yield (seeds harvested per seed planted) by as much as eight times. The use of seed drill saves time and labor.

Some machines for metering out seeds for planting are called planters. The concepts evolved from ancient Chinese practice and later evolved into mechanisms that pick up seeds from a bin and deposit them down a tube.

Seed drills of earlier centuries included single-tube seed drills in Sumer and multi-tube seed drills in China, [1] and later a seed drill in 1701 by Jethro Tull that was influential in the growth of farming technology in recent centuries. Even for a century after Tull, hand-sowing of grain remained common.

Function

Drilling the field 7268 Canterbury Agricultural College farm.jpg
Drilling the field

Many seed drills consist of a hopper filled with seeds arranged above a series of tubes that can be set at selected distances from each other to allow optimum growth of the resulting plants. Seeds are spaced out using fluted paddles which rotate using a geared drive from one of the drill's land wheels. The seeding rate is altered by changing gear ratios. Most modern drills use air to convey seeds in plastic tubes from the seed hopper to the colters. This arrangement enables seed drills to be much wider than the seed hopper—as much as 12m wide in some cases. The seed is metered mechanically into an air stream created by a hydraulically powered onboard fan and conveyed initially to a distribution head which sub-divides the seeds into the pipes taking the seeds to the individual colters.

Before the operation of a conventional seed drill, hard ground has to be plowed and harrowed to soften it enough to be able to get the seeds to the right depth and make a good "seedbed", providing the right mix of moisture, stability, space and air for seed germination and root development. The plow digs up the earth and the harrow smooths the soil and breaks up any clumps. In the case that the soil is not as compacted as to need a plow, it can also be tilled by less deeply disturbing tools, before drilling. The least interruption of soil structure and soil fauna happens when a type of drilling machine is used which is outfitted to be able to "direct drill"; "direct" referring to sowing into narrow rows opened by single teeth placed in front of every seed-dispensing tube, directly into/ between the partly composted remains (stubble) of the last crop (directly into an untilled field).

The drill must be set for the size of the seed used. After this the grain is put in the hopper on top, from which the seed grains flow down to the drill which spaces and plants the seed. This system is still used today but has been updated and modified over time in many aspects; the most visible example being very wide machines with which one farmer can plant many rows of seed at the same time.

A seed drill can be pulled across the field, depending on the type, using draft animals, like bullocks or by a power engine, usually a tractor. Seeds sown using a seed drill are distributed evenly and placed at the correct depth in the soil.

Precursors

In older methods of planting, a field is initially prepared with a plow to a series of linear cuts known as furrows. The field is then seeded by throwing the seeds over the field, a method known as manual broadcasting. The seeds may not be sown to the right depth nor the proper distance from one another. Seeds that land in the furrows have better protection from the elements, and natural erosion or manual raking will cover them while leaving some exposed. The result is a field planted roughly in rows, but having a large number of plants outside the furrow lanes.

There are several downsides to this approach. The most obvious is that seeds that land outside the furrows will not have the growth shown by the plants sown in the furrow since they are too shallow on the soil. Because of this, they are lost to the elements. Many of the seeds remain on the surface where they are vulnerable to being eaten by birds or carried away on the wind. Surface seeds commonly never germinate at all or germinate prematurely, only to be killed by frost.

Since the furrows represent only a portion of the field's area, and broadcasting distributes seeds fairly evenly, this results in considerable wastage of seeds. Less obvious are the effects of over seeding; all crops grow best at a certain density, which varies depending on the soil and weather conditions. Additional seeding above this will actually reduce crop yields, in spite of more plants being sown, as there will be competition among the plants for the minerals, water, and the soil available. Another reason is that the mineral resources of the soil will also deplete at a much faster rate, thereby directly affecting the growth of the plants.

History

Chinese double-tube seed drill, published by Song Yingxing in the Tiangong Kaiwu encyclopedia of 1637 ChineseSeedDrill1637.jpg
Chinese double-tube seed drill, published by Song Yingxing in the Tiangong Kaiwu encyclopedia of 1637

While the Babylonians used primitive seed drills around 1400 BCE, the invention never reached Europe. Multi-tube iron seed drills were invented by the Chinese in the 2nd century BCE. [2] [3] [4] This multi-tube seed drill has been credited with giving China an efficient food production system that allowed it to support its large population for millennia. [4] This multi-tube seed drill may have been introduced into Europe following contacts with China. [2] [3] [4] In the Indian subcontinent, the seed drill was in widespread use among peasants by the time of the Mughal Empire in the 16th century. [5]

The first known European seed drill was attributed to Camillo Torello and patented by the Venetian Senate in 1566. A seed drill was described in detail by Tadeo Cavalina of Bologna in 1602. [4] In England, the seed drill was further refined by Jethro Tull in 1701 in the Agricultural Revolution. However, seed drills of this and successive types were both expensive and unreliable, as well as fragile. Seed drills would not come into widespread use in Europe until the mid to late 19th century,[ failed verification ] when manufacturing advances such as machine tools, die forging and metal stamping allowed large scale precision manufacturing of metal parts. [6]

Early drills were small enough to be pulled by a single horse, and many of these remained in use into the 1930s. The availability of steam, and later gasoline tractors, however, saw the development of larger and more efficient drills that allowed farmers to seed ever larger tracts in a single day.

Recent improvements to drills allow seed-drilling without prior tilling. This means that soils subject to erosion or moisture loss are protected until the seed germinates and grows enough to keep the soil in place. This also helps prevent soil loss by avoiding erosion after tilling. The development of the press drill was one of the major innovations in pre-1900 farming technology.

Impact

1902 model 12-run seed drill 1902 Monitor seed drill detail.jpg
1902 model 12-run seed drill
Modern air seeder and hoe drill combination Bourgault Air Seeder & Paralink Hoe Drill.jpg
Modern air seeder and hoe drill combination

The invention of the seed drill dramatically improved germination. The seed drill employed a series of runners spaced at the same distance as the plowed furrows. These runners, or drills, opened the furrow to a uniform depth before the seed was dropped. Behind the drills were a series of presses, metal discs which cut down the sides of the trench into which the seeds had been planted, covering them over.

This innovation permitted farmers to have precise control over the depth at which seeds were planted. This greater measure of control meant that fewer seeds germinated early or late and that seeds were able to take optimum advantage of available soil moisture in a prepared seedbed. The result was that farmers were able to use less seed and at the same time experience larger yields than under the broadcast methods.

The seed drill allows farmers to sow seeds in well-spaced rows at specific depths at a specific seed rate; each tube creates a hole of a specific depth, drops in one or more seeds, and covers it over. This invention gives farmers much greater control over the depth that the seed is planted and the ability to cover the seeds without back-tracking. The result is an increased rate of germination, and a much-improved crop yield (up to eight times compared to broadcast seeding [7] ).

The use of a seed drill also facilitates weed control. Broadcast seeding results in a random array of growing crops, making it difficult to control weeds using any method other than hand weeding. A field planted using a seed drill is much more uniform, typically in rows, allowing weeding with a hoe during the growing season. Weeding by hand is laborious and inefficient. Poor weeding reduces crop yield, so this benefit is extremely significant.

See also

Related Research Articles

<span class="mw-page-title-main">Plough</span> Tool or farm implement

A plough or plow is a farm tool for loosening or turning the soil before sowing seed or planting. Ploughs were traditionally drawn by oxen and horses but in modern farms are drawn by tractors. A plough may have a wooden, iron or steel frame with a blade attached to cut and loosen the soil. It has been fundamental to farming for most of history. The earliest ploughs had no wheels; such a plough was known to the Romans as an aratrum. Celtic peoples first came to use wheeled ploughs in the Roman era.

<span class="mw-page-title-main">Finger millet</span> Species of grass

Finger millet is an annual herbaceous plant widely grown as a cereal crop in the arid and semiarid areas in Africa and Asia. It is a tetraploid and self-pollinating species probably evolved from its wild relative Eleusine africana.

<span class="mw-page-title-main">Tillage</span> Preparation of soil by mechanical agitation

Tillage is the agricultural preparation of soil by mechanical agitation of various types, such as digging, stirring, and overturning. Examples of human-powered tilling methods using hand tools include shoveling, picking, mattock work, hoeing, and raking. Examples of draft-animal-powered or mechanized work include ploughing, rototilling, rolling with cultipackers or other rollers, harrowing, and cultivating with cultivator shanks (teeth).

<span class="mw-page-title-main">Sowing</span> Planting of seeds or other propagules in the ground for germination

Sowing is the process of planting seeds. An area or object that has had seeds planted in it will be described as a sowed or sown area.

<span class="mw-page-title-main">Jethro Tull (agriculturist)</span> English agricultural pioneer, 1674–1741

Jethro Tull was an English agriculturist from Berkshire who helped to bring about the British Agricultural Revolution of the 18th century. He perfected a horse-drawn seed drill in 1701 that economically sowed the seeds in neat rows, and later developed a horse-drawn hoe. Tull's methods were adopted by many landowners and helped to provide the basis for modern agriculture.

<span class="mw-page-title-main">Harrow (tool)</span> Agricultural tool

In agriculture, a harrow is a farm implement used for surface tillage. It is used after ploughing for breaking up and smoothing out the surface of the soil. The purpose of harrowing is to break up clods and to provide a soil structure, called tilth, that is suitable for planting seeds. Coarser harrowing may also be used to remove weeds and to cover seed after sowing.

<span class="mw-page-title-main">Seedbed</span> Local soil where seeds are planted

A seedbed or seedling bed is the local soil environment in which seeds are planted. Often it comprises not only the soil but also a specially prepared cold frame, hotbed or raised bed used to grow the seedlings in a controlled environment into larger young plants before transplanting them into a garden or field. A seedling bed is used to increase the number of seeds that germinate.

The stale seed bed or false seed bed method is a weed control technique used at both the farm and garden scales. In this that the young weeds can then be easily eliminated. By destroying them early, the farmer or gardener eliminates most of that season's annual weeds, which reduces their labor and improves their crop yields.

<span class="mw-page-title-main">Weed control</span> Botanical component of pest control for plants

Weed control is a type of pest control, which attempts to stop or reduce growth of weeds, especially noxious weeds, with the aim of reducing their competition with desired flora and fauna including domesticated plants and livestock, and in natural settings preventing non native species competing with native species.

<span class="mw-page-title-main">Broadcast seeding</span>

In agriculture, gardening, and forestry, broadcast seeding is a method of seeding that involves scattering seed, by hand or mechanically, over a relatively large area. This is in contrast to:

<i>Spergula arvensis</i> Species of flowering plant

Spergula arvensis, the corn spurry, stickwort, starwort or spurrey, is a species of plant in the genus Spergula.

<span class="mw-page-title-main">Intensive crop farming</span> Modern form of farming

Intensive crop farming is a modern industrialized form of crop farming. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations.

<span class="mw-page-title-main">Soybean management practices</span>

Soybean management practices in farming are the decisions a producer must make in order to raise a soybean crop. The type of tillage, plant population, row spacing, and planting date are four major management decisions that soybean farmers must consider. How individual producers choose to handle each management application depends on their own farming circumstances.

<span class="mw-page-title-main">Agricultural machinery</span> Machinery used in farming or other agriculture

Agricultural machinery relates to the mechanical structures and devices used in farming or other agriculture. There are many types of such equipment, from hand tools and power tools to tractors and the farm implements that they tow or operate. Machinery is used in both organic and nonorganic farming. Especially since the advent of mechanised agriculture, agricultural machinery is an indispensable part of how the world is fed.

<span class="mw-page-title-main">Perennial rice</span> Varieties of rice that can grow season after season without re-seeding

Perennial rice are varieties of long-lived rice that are capable of regrowing season after season without reseeding; they are being developed by plant geneticists at several institutions. Although these varieties are genetically distinct and will be adapted for different climates and cropping systems, their lifespan is so different from other kinds of rice that they are collectively called perennial rice. Perennial rice—like many other perennial plants—can spread by horizontal stems below or just above the surface of the soil but they also reproduce sexually by producing flowers, pollen and seeds. As with any other grain crop, it is the seeds that are harvested and eaten by humans.

<span class="mw-page-title-main">Natural farming</span> Sustainable farming approach

Natural farming, also referred to as "the Fukuoka Method", "the natural way of farming", or "do-nothing farming", is an ecological farming approach established by Masanobu Fukuoka (1913–2008). Fukuoka, a Japanese farmer and philosopher, introduced the term in his 1975 book The One-Straw Revolution. The title refers not to lack of effort, but to the avoidance of manufactured inputs and equipment. Natural farming is related to fertility farming, organic farming, sustainable agriculture, agroecology, agroforestry, ecoagriculture and permaculture, but should be distinguished from biodynamic agriculture.

<span class="mw-page-title-main">Michel Lullin de Chateauvieux</span> Genevan nobleman, agronomist and experimenter on agriculture

Michel Lullin de Châteauvieux was a nobleman, agronomist and experimenter on agriculture, known for the design of many agricultural instruments. He was from the Republic of Geneva.

<span class="mw-page-title-main">Cumin</span> Species of plant with seeds used as a spice

Cumin is a flowering plant in the family Apiaceae, native to the Irano-Turanian Region. Its seeds – each one contained within a fruit, which is dried – are used in the cuisines of many cultures in both whole and ground form. Although cumin is used in traditional medicine, there is no high-quality evidence that it is safe or effective as a therapeutic agent.

This glossary of agriculture is a list of definitions of terms and concepts used in agriculture, its sub-disciplines, and related fields, including horticulture, animal husbandry, agribusiness, and agricultural policy. For other glossaries relevant to agricultural science, see Glossary of biology, Glossary of ecology, Glossary of environmental science, and Glossary of botanical terms.

<span class="mw-page-title-main">Happy seeder</span> Type of agricultural machinery

A Happy Seeder is a no-till planter, towed behind a tractor, that sows (plants) seeds in rows directly without any prior seedbed preparation. It is operated with the PTO of the tractor and is connected to it with three-point linkage. It consists of a straw managing chopper and a zero till drill that makes it possible to sow new crop in the residue of the previous crop. Flail type straight blades are mounted on the straw management rotor that chops the stubbles that comes in contact with the sowing tine. It deposits the residue of the previous crop over the sown field as mulch. Mainly, it is used to sow wheat after the paddy harvest in North India.

References

  1. Temple, Robert; Needham, Joseph (1986). The Genius of China: 3000 years of science, discovery, and invention. New York: Simon and Schuster.
  2. 1 2 History Channel, Where Did It Come From? Episode: "Ancient China: Agriculture"
  3. 1 2 Joseph Needham; Lu Gwei-djen; Wang Ling (1987). Science and Civilisation in China . Vol. 5. Cambridge University Press. pp. 48–50. ISBN   978-0-521-30358-3.
  4. 1 2 3 4 Temple, p.25
  5. Habib, Irfan; Kumar, Dharma; Raychaudhuri, Tapan (1987). "Chapter VIII – The Systems of Agricultural Production". The Cambridge Economic History of India (PDF). Vol. 1. Cambridge University Press. p. 214.
  6. Hounshell, David A. (1984), From the American System to Mass Production, 1800–1932: The Development of Manufacturing Technology in the United States, Baltimore, Maryland: Johns Hopkins University Press, ISBN   978-0-8018-2975-8, LCCN   83016269, OCLC   1104810110
  7. The story of wheat | Ears of plenty | Economist.com Paid subscription required

Further reading