British Agricultural Revolution

Last updated

The British Agricultural Revolution, or Second Agricultural Revolution, was an unprecedented increase in agricultural production in Britain arising from increases in labour and land productivity between the mid-17th and late 19th centuries. Agricultural output grew faster than the population over the hundred-year period ending in 1770, and thereafter productivity remained among the highest in the world. This increase in the food supply contributed to the rapid growth of population in England and Wales, from 5.5 million in 1700 to over 9 million by 1801, though domestic production gave way increasingly to food imports in the nineteenth century as the population more than tripled to over 35 million. [1] Using 1700 as a base year (=100), agricultural output per agricultural worker in Britain steadily increased from about 50 in 1500, to around 65 in 1550, to 90 in 1600, to over 100 by 1650, to over 150 by 1750, rapidly increasing to over 250 by 1850. [2] The rise in productivity accelerated the decline of the agricultural share of the labour force, adding to the urban workforce on which industrialization depended: the Agricultural Revolution has therefore been cited as a cause of the Industrial Revolution.


However, historians continue to dispute when exactly such a "revolution" took place and of what it consisted. Rather than a single event, G. E. Mingay states that there were a "profusion of agricultural revolutions, one for two centuries before 1650, another emphasising the century after 1650, a third for the period 1750–1780, and a fourth for the middle decades of the nineteenth century". [3] This has led more recent historians to argue that any general statements about "the Agricultural Revolution" are difficult to sustain. [4] [5]

One important change in farming methods was the move in crop rotation to turnips and clover in place of fallow. Turnips can be grown in winter and are deep-rooted, allowing them to gather minerals unavailable to shallow-rooted crops. Clover fixes nitrogen from the atmosphere into a form of fertiliser. This permitted the intensive arable cultivation of light soils on enclosed farms and provided fodder to support increased livestock numbers whose manure added further to soil fertility.


Called “British,” the term implies that the Revolution began in Britain. The term does not imply that the Revolution ended in Britain. Other countries in Europe, [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] East Asia [17] and North America [18] [19] [20] followed suit in the next two centuries. The Second Agricultural Revolution was much like the First in that it occurred in many regions across the world in a short span of time.

In addition, the British origins of the Revolution is the view shared by the British historians. The Dutch historians disagree. In the Netherlands in 1500 – 1650, the agricultural output per laborer rose by 80% leading to over 60% decline in manpower engaged in agriculture by 1650. [21] [22] From 1500 to 1750, the Dutch were faster than Britain in reducing the agricultural sector of population. [23] Notably, one of the innovations in the British Revolution was the “Dutch” light plow (chapter 1.2 below).

Major developments and innovations

The British Agricultural Revolution was the result of the complex interaction of social, economic and farming technological changes. Major developments and innovations include: [24]

Crop rotation

Crop Yield net of Seed
(bushels/acre) [26]
Growth rate

Yields have had the seed used to plant the crop subtracted to give net yields.
Average seed sown is estimated at:

  • Wheat 2.5 bu/acre;
  • Rye 2.5 bu/acre;
  • Barley 3.5–4.30 bu/acre;
  • Oats 2.5–4.0 bu/acre;
  • Peas & beans 2.50–3.0 bu/acre.

$ Average annual growth rate of agricultural output is per agricultural worker.
Other authors offer different estimates.

One of the most important innovations of the British Agricultural Revolution was the development of the Norfolk four-course rotation, which greatly increased crop and livestock yields by improving soil fertility and reducing fallow. [24]

Crop rotation is the practice of growing a series of dissimilar types of crops in the same area in sequential seasons to help restore plant nutrients and mitigate the build-up of pathogens and pests that often occurs when one plant species is continuously cropped. Rotation can also improve soil structure and fertility by alternating deep-rooted and shallow-rooted plants. Turnip roots, for example, can recover nutrients from deep under the soil. The Norfolk four-course system, as it is now known, rotates crops so that different crops are planted with the result that different kinds and quantities of nutrients are taken from the soil as the plants grow. An important feature of the Norfolk four-field system was that it used labour at times when demand was not at peak levels. [27]

Planting cover crops such as turnips and clover was not permitted under the common field system because they interfered with access to the fields. Besides, other people's livestock could graze the turnips. [28]

During the Middle Ages, the open field system had initially used a two-field crop rotation system where one field was left fallow or turned into pasture for a time to try to recover some of its plant nutrients. Later they employed a three-year, three field crop rotation routine, with a different crop in each of two fields, e.g. oats, rye, wheat, and barley with the second field growing a legume like peas or beans, and the third field fallow. Normally from 10% to 30% of the arable land in a three crop rotation system is fallow. Each field was rotated into a different crop nearly every year. Over the following two centuries, the regular planting of legumes such as peas and beans in the fields that were previously fallow slowly restored the fertility of some croplands. The planting of legumes helped to increase plant growth in the empty field due to the ability of the bacteria on legume roots to fix nitrogen (N2) from the air into the soil in a form that plants could use. Other crops that were occasionally grown were flax and members of the mustard family.

Convertible husbandry was the alternation of a field between pasture and grain. Because nitrogen builds up slowly over time in pasture, ploughing up pasture and planting grains resulted in high yields for a few years. A big disadvantage of convertible husbandry was the hard work in breaking up pastures and difficulty in establishing them. The significance of convertible husbandry is that it introduced pasture into the rotation. [29]

The farmers in Flanders (in parts of France and current day Belgium) discovered a still more effective four-field crop rotation system, using turnips and clover (a legume) as forage crops to replace the three-year crop rotation fallow year.

The four-field rotation system allowed farmers to restore soil fertility and restore some of the plant nutrients removed with the crops. Turnips first show up in the probate records in England as early as 1638 but were not widely used till about 1750. Fallow land was about 20% of the arable area in England in 1700 before turnips and clover were extensively grown in the 1830s. Guano and nitrates from South America were introduced in the mid-19th century and fallow steadily declined to reach only about 4% in 1900. [30] Ideally, wheat, barley, turnips and clover would be planted in that order in each field in successive years. The turnips helped keep the weeds down and were an excellent forage crop—ruminant animals could eat their tops and roots through a large part of the summer and winters. There was no need to let the soil lie fallow as clover would re-add nitrates (nitrogen-containing salts) back to the soil. The clover made excellent pasture and hay fields as well as green manure when it was ploughed under after one or two years. The addition of clover and turnips allowed more animals to be kept through the winter, which in turn produced more milk, cheese, meat and manure, which maintained soil fertility. This maintains a good amount of crops produced.

The mix of crops also changed: the area under wheat rose by 1870 to 3.5 million acres (1.4m ha), barley to 2.25m acres (0.9m ha) and oats less dramatically to 2.75m acres (1.1m ha), while rye dwindled to 60,000 acres (25,000 ha), less than a tenth of its late medieval peak. Grain yields benefited from new and better seed alongside improved rotation and fertility: wheat yields increased by a quarter in the 18th century [31] and nearly half in the 19th, averaging 30 bushels per acre (2,080 kg/ha) by the 1890s.

The Dutch and Rotherham swing (wheel-less) plough

The Dutch acquired the iron-tipped, curved mouldboard, adjustable depth plough from the Chinese in the early 17th century. It had the advantage of being able to be pulled by one or two oxen compared to the six or eight needed by the heavy wheeled northern European plough. The Dutch plough was brought to Britain by Dutch contractors who were hired to drain East Anglian fens and Somerset moors. The plough was extremely successful on wet, boggy soil, but was soon used on ordinary land. [32] [33]

British improvements included Joseph Foljambe's cast iron plough (patented 1730), which combined an earlier Dutch design with a number of innovations. Its fittings and coulter were made of iron and the mouldboard and share were covered with an iron plate, making it easier to pull and more controllable than previous ploughs. By the 1760s Foljambe was making large numbers of these ploughs in a factory outside of Rotherham, England, using standard patterns with interchangeable parts. The plough was easy for a blacksmith to make, but by the end of the 18th century it was being made in rural foundries. [33] [34] [35] By 1770 it was the cheapest and best plough available. It spread to Scotland, America, and France. [33]

New crops

The Columbian exchange brought many new foodstuffs from the Americas to Eurasia, most of which took decades or centuries to catch on. Arguably the most important of these was the potato. Potatoes yielded about three times the calories per acre of wheat or barley, due in large part to only taking 3–4 months to mature versus 10 months for wheat. On top of this, potatoes had higher nutritive value than wheat, could be grown in even fallow and nutrient-poor soil, did not require any special tools, and were considered fairly appetizing. According to Langer, a single acre of potatoes could feed a family of five or six, plus a cow, for the better part of a year, an unprecedented level of production. By 1715 the potato was widespread in the Low Countries, the Rhineland, Southwestern Germany, and Eastern France, but took longer to spread elsewhere. [36]

The Royal Society of London for Improving Natural Knowledge, established in 1660, almost immediately championed the potato, stressing its value as a substitute for wheat (particularly since famine periods for wheat overlapped with bump periods for potatoes). The 1740 famines buttressed their case. [37] The mid 18th century was marked by rapid adoption of the potato by various European countries, especially in central Europe, as various wheat famines demonstrated its value. The potato was grown in Ireland, a property of the English crown and common source of food exports, since the early 17th century and quickly spread so that by the 18th century it had been firmly established as a staple food. It spread to England shortly after it popped up in Ireland, first being widely cultivated in Lancashire and around London, and by the mid-18th century it was esteemed and common. By the late 18th century, Sir Frederick Eden wrote that the potato had become "a constant standing dish, at every meal, breakfast excepted, at the tables of the Rich, as well as the Poor." [38]

While not as vital as the potato, maize also contributed to the boost of Western European agricultural productivity. Maize also had far higher per-acre productivity than wheat (about two and a half times), [39] grew at widely differing altitudes and in a variety of soils (though warmer climates were preferred), and unlike wheat it could be harvested in successive years from the same plot of land. It was often grown alongside potatoes, as maize plants required wide spacing. Maize was cultivated in Spain since 1525 and Italy since 1530, contributing to their growing populations in the early modern era as it became a dietary staple in the 17th century (in Italy it was often made into Polenta). It spread from northern Italy into Germany and beyond, becoming an important staple in the Habsburg monarchy (especially Hungary and Austria) by the late 17th century. Its spread started in southern France in 1565, and by the start of the 18th century, it was the main food source of central and southern French peasants (it was more popular as animal fodder in the north). [40]


Conjectural map of a mediaeval English manor. The part allocated to "common pasture" is shown in the north-east section, shaded green. Plan mediaeval manor.jpg
Conjectural map of a mediaeval English manor. The part allocated to "common pasture" is shown in the north-east section, shaded green.

In Europe, agriculture was feudal from the Middle Ages. In the traditional open field system, many subsistence farmers cropped strips of land in large fields held in common and divided the produce. They typically worked under the auspices of the aristocracy or the Catholic Church, who owned much of the land.

As early as the 12th century, some fields in England tilled under the open field system were enclosed into individually owned fields. The Black Death from 1348 onward accelerated the break-up of the feudal system in England. [41] Many farms were bought by yeomen who enclosed their property and improved their use of the land. More secure control of the land allowed the owners to make innovations that improved their yields. Other husbandmen rented property they "share cropped" with the land owners. Many of these enclosures were accomplished by acts of Parliament in the 16th and 17th centuries.

The process of enclosing property accelerated in the 15th and 16th centuries. The more productive enclosed farms meant that fewer farmers were needed to work the same land, leaving many villagers without land and grazing rights. Many of them moved to the cities in search of work in the emerging factories of the Industrial Revolution. Others settled in the English colonies. English Poor Laws were enacted to help these newly poor.

Some practices of enclosure were denounced by the Church, and legislation was drawn up against it; but the large, enclosed fields were needed for the gains in agricultural productivity from the 16th to 18th centuries. This controversy led to a series of government acts, culminating in the General Enclosure Act of 1801 which sanctioned large-scale land reform.

The process of enclosure was largely complete by the end of the 18th century.

Development of a national market

Regional markets were widespread by 1500 with about 800 locations in Britain. The most important development between the 16th century and the mid-19th century was the development of private marketing. By the 19th century, marketing was nationwide and the vast majority of agricultural production was for market rather than for the farmer and his family. The 16th-century market radius was about 10 miles, which could support a town of 10,000. [42]

The next stage of development was trading between markets, requiring merchants, credit and forward sales, knowledge of markets and pricing and of supply and demand in different markets. Eventually, the market evolved into a national one driven by London and other growing cities. By 1700, there was a national market for wheat.

Legislation regulating middlemen required registration, addressed weights and measures, fixing of prices and collection of tolls by the government. Market regulations were eased in 1663 when people were allowed some self-regulation to hold inventory, but it was forbidden to withhold commodities from the market in an effort to increase prices. In the late 18th century, the idea of self-regulation was gaining acceptance. [43]

The lack of internal tariffs, customs barriers and feudal tolls made Britain "the largest coherent market in Europe". [44]

Transportation infrastructures

High wagon transportation costs made it uneconomical to ship commodities very far outside the market radius by road, generally limiting shipment to less than 20 or 30 miles to market or to a navigable waterway. Water transport was, and in some cases still is, much more efficient than land transport. In the early 19th century it cost as much to transport a ton of freight 32 miles by wagon over an unimproved road as it did to ship it 3000 miles across the Atlantic. [45] A horse could pull at most one ton of freight on a Macadam road, which was multi-layer stone covered and crowned, with side drainage. But a single horse could pull a barge weighing over 30 tons.

Commerce was aided by the expansion of roads and inland waterways. Road transport capacity grew from threefold to fourfold from 1500 to 1700. [46] [47]

Railroads would eventually reduce the cost of land transport by over 95%.

Land conversion, drainage and reclamation

Another way to get more land was to convert some pasture land into arable land and recover fen land and some pastures. It is estimated that the amount of arable land in Britain grew by 10–30% through these land conversions.

The British Agricultural Revolution was aided by land maintenance advancements in Flanders and the Netherlands. Due to the large and dense population of Flanders and Holland, farmers there were forced to take maximum advantage of every bit of usable land; the country had become a pioneer in canal building, soil restoration and maintenance, soil drainage, and land reclamation technology. Dutch experts like Cornelius Vermuyden brought some of this technology to Britain.

Water-meadows were utilised in the late 16th to the 20th centuries and allowed earlier pasturing of livestock after they were wintered on hay. This increased livestock yields, giving more hides, meat, milk, and manure as well as better hay crops.

Rise in domestic farmers

With the development of regional markets and eventually a national market, aided by improved transportation infrastructures, farmers were no longer dependent on their local market and were less subject to having to sell at low prices into an oversupplied local market and not being able to sell their surpluses to distant localities that were experiencing shortages. They also became less subject to price fixing regulations. Farming became a business rather than solely a means of subsistence. [48]

Under free-market capitalism, farmers had to remain competitive. To be successful, farmers had to become effective managers who incorporated the latest farming innovations in order to be low cost producers.

Human Capital Effects

During the 18th century, a high share of farmers had the ability to basic numerical skills as well as the ability to read and write (literacy), both of which are skills that were far from widespread in the early modern period. This is unsurprising for countries such as England, where farmers developed particularly high human capital skills because of rapid occupational changes – they became a minority that produced the food for the majority of the population. However, the ‘farmer effect’ of high human capital among farmers applies both to the center and the periphery of Europe. One possible explanation for this phenomenon is that a constant amount of nutrition was almost always available to farmer families. They could feed themselves even during times of famine by increasing the share of their products that they consumed themselves instead of selling them on markets. There is a strong link between nutritional deprivation and cognitive abilities, therefore it seems likely that farmers were one of the groups of society that contributed significantly to the numeracy revolution achieved in Europe during the early modern era. [49] [2]

Selective breeding of livestock

In England, Robert Bakewell and Thomas Coke introduced selective breeding as a scientific practice, mating together two animals with particularly desirable characteristics, and also using inbreeding or the mating of close relatives, such as father and daughter, or brother and sister, to stabilise certain qualities in order to reduce genetic diversity in desirable animal programmes from the mid-18th century. Arguably, Bakewell's most important breeding programme was with sheep. Using native stock, he was able to quickly select for large, yet fine-boned sheep, with long, lustrous wool. The Lincoln Longwool was improved by Bakewell, and in turn the Lincoln was used to develop the subsequent breed, named the New (or Dishley) Leicester. It was hornless and had a square, meaty body with straight top lines. [50]

Bakewell was also the first to breed cattle to be used primarily for beef. Previously, cattle were first and foremost kept for pulling ploughs as oxen or for dairy uses, with beef from surplus males as an additional bonus, but he crossed long-horned heifers and a Westmoreland bull to eventually create the Dishley Longhorn. As more and more farmers followed his lead, farm animals increased dramatically in size and quality. The average weight of a bull sold for slaughter at Smithfield was reported around 1700 as 370 pounds (170 kg), though this is considered a low estimate: by 1786, weights of 840 pounds (380 kg) were reported, [51] [52] though other contemporary indicators suggest an increase of around a quarter over the intervening century.

In 1300, the average milk cow produced 100 gallons of milk annually. This figure rose throughout the early modern era. The average in 1400-1449 was 140; in 1450-1499 162; in 1550-1599 212; in 1600-1649 243; in 1650-1699 272; in 1700-1749 319; in 1750-1799 366; and in 1800-1849 420. Beef output per animal rose even faster, from 168 lbs in 1300, to 251 in 1450-1499, to 317 in 1550-1599, 356 in 1600-1649, 400 in 1650-1699, 449 in 1700-1749, 504 in 1750-1799, and 566 in 1800-1849. [53]

British agriculture, 1800–1900

Besides the organic fertilisers in manure, new fertilisers were slowly discovered. Massive sodium nitrate (NaNO3) deposits found in the Atacama Desert, Chile, were brought under British financiers like John Thomas North and imports were started. Chile was happy to allow the exports of these sodium nitrates by allowing the British to use their capital to develop the mining and imposing a hefty export tax to enrich their treasury. Massive deposits of sea bird guano (11–16% N, 8–12% phosphate, and 2–3% potash), were found and started to be imported after about 1830. Significant imports of potash obtained from the ashes of trees burned in opening new agricultural lands were imported. By-products of the British meat industry like bones from the knackers' yards were ground up or crushed and sold as fertiliser. By about 1840 about 30,000 tons of bones were being processed (worth about £150,000). An unusual alternative to bones was found to be the millions of tons of fossils called coprolites found in South East England. When these were dissolved in sulphuric acid they yielded a high phosphate mixture (called "super phosphate") that plants could absorb readily and increased crop yields. Mining coprolite and processing it for fertiliser soon developed into a major industry—the first commercial fertiliser. [54] Higher yield per acre crops were also planted as potatoes went from about 300,000 acres in 1800 to about 400,000 acres in 1850 with a further increase to about 500,000 in 1900. [55] Labour productivity slowly increased at about 0.6% per year. With more capital invested, more organic and inorganic fertilisers, and better crop yields increased the food grown at about 0.5%/year—not enough to keep up with population growth.

Great Britain contained about 10.8 million people in 1801, 20.7 million in 1851 and 37.1 million by 1901. This corresponds to an annual population growth rate of 1.3% in 1801-1851 and 1.2% in 1851–1901, twice the rate of agricultural output growth. [56] In addition to land for cultivation there was also a demand for pasture land to support more livestock. The growth of arable acreage slowed from the 1830s and went into reverse from the 1870s in the face of cheaper grain imports, and wheat acreage nearly halved from 1870 to 1900. [57]

The recovery of food imports after the Napoleonic Wars (1803–1815) and the resumption of American trade following the War of 1812 (1812–1815) led to the enactment in 1815 of the Corn Laws (protective tariffs) to protect cereal grain producers in Britain against foreign competition. These laws were only removed in 1846 after the onset of the Great Irish Famine in which a potato blight [58] ruined most of the Irish potato crop and brought famine to the Irish people from 1846 to 1850. [59] Though the blight also struck Scotland, Wales, England, and much of Continental Europe, its effect there was far less severe since potatoes constituted a much smaller percentage of the diet than in Ireland. Hundreds of thousands died in the famine and millions more emigrated to England, Wales, Scotland, Canada, Australia, Europe, and the United States, reducing the population from about 8.5 million in 1845 to 4.3 million by 1921. [60]

Between 1873 and 1879 British agriculture suffered from wet summers that damaged grain crops. Cattle farmers were hit by foot-and-mouth disease, and sheep farmers by sheep liver rot. The poor harvests, however, masked a greater threat to British agriculture: growing imports of foodstuffs from abroad. The development of the steam ship and the development of extensive railway networks in Britain and in the United States allowed U.S. farmers with much larger and more productive farms to export hard grain to Britain at a price that undercut the British farmers. At the same time, large amounts of cheap corned beef started to arrive from Argentina, and the opening of the Suez Canal in 1869 and the development of refrigerator ships (reefers) in about 1880 opened the British market to cheap meat and wool from Australia, New Zealand, and Argentina. The Long Depression was a worldwide economic recession that began in 1873 and ended around 1896. It hit the agricultural sector hard and was the most severe in Europe and the United States, which had been experiencing strong economic growth fuelled by the Second Industrial Revolution in the decade following the American Civil War. By 1900, half the meat eaten in Britain came from abroad and tropical fruits such as bananas were also being imported on the new refrigerator ships.

Seed planting

Before the introduction of the seed drill, the common practice was to plant seeds by broadcasting (evenly throwing) them across the ground by hand on the prepared soil and then lightly harrowing the soil to cover the seed. Seeds left on top of the ground were eaten by birds, insects, and mice. There was no control over spacing and seeds were planted too close together and too far apart. Alternatively, seeds could be laboriously planted one by one using a hoe and/or a shovel. Cutting down on wasted seed was important because the yield of seeds harvested to seeds planted at that time was around four or five.

The seed drill was introduced from China to Italy in the mid-16th century where it was patented by the Venetian Senate. [61] Jethro Tull invented an improved seed drill in 1701. It was a mechanical seeder which distributed seeds evenly across a plot of land and at the correct depth. Tull's seed drill was very expensive and fragile and therefore did not have much of an impact. [62] The technology to manufacture affordable and reliable machinery, including agricultural machinery, improved dramatically in the last half of the 19th century. [63]


The Agricultural Revolution was part of a long process of improvement, but sound advice on farming began to appear in England in the mid-17th century, from writers such as Samuel Hartlib, Walter Blith and others, [64] and the overall agricultural productivity of Britain started to grow significantly only in the period of the Agricultural Revolution. It is estimated that total agricultural output grew 2.7-fold between 1700 and 1870 and output per worker at a similar rate.

Despite its name, the Agricultural Revolution in Britain did not result in overall productivity per hectare of agricultural area as high as in China, where intensive cultivation (including multiple annual cropping in many areas) had been practiced for many centuries. [65] [66]

The Agricultural Revolution in Britain proved to be a major turning point in history, allowing the population to far exceed earlier peaks and sustain the country's rise to industrial pre-eminence. Towards the end of the 19th century, the substantial gains in British agricultural productivity were rapidly offset by competition from cheaper imports, made possible by the exploitation of new lands and advances in transportation, refrigeration, and other technologies.

See also

Related Research Articles

<span class="mw-page-title-main">Agriculture</span> Cultivation of plants and animals to provide useful products

Agriculture or farming is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities. The history of agriculture began thousands of years ago. After gathering wild grains beginning at least 105,000 years ago, nascent farmers began to plant them around 11,500 years ago. Sheep, goats, pigs and cattle were domesticated over 10,000 years ago. Plants were independently cultivated in at least 11 regions of the world. Industrial agriculture based on large-scale monoculture in the twentieth century came to dominate agricultural output, though about 2 billion people still depended on subsistence agriculture.

<span class="mw-page-title-main">Crop rotation</span> Agricultural practice of changing crops

Crop rotation is the practice of growing a series of different types of crops in the same area across a sequence of growing seasons. It reduces reliance on one set of nutrients, pest and weed pressure, and the probability of developing resistant pests and weeds.

<span class="mw-page-title-main">Intensive farming</span> Type of agriculture using high inputs to try to get high outputs

Intensive agriculture, also known as intensive farming, conventional, or industrial agriculture, is a type of agriculture, both of crop plants and of animals, with higher levels of input and output per unit of agricultural land area. It is characterized by a low fallow ratio, higher use of inputs such as capital and labour, and higher crop yields per unit land area.

<span class="mw-page-title-main">Open-field system</span> Prevalent ownership and land use structure in medieval agriculture

The open-field system was the prevalent agricultural system in much of Europe during the Middle Ages and lasted into the 20th century in Russia, Iran, and Turkey. Each manor or village had two or three large fields, usually several hundred acres each, which were divided into many narrow strips of land. The strips or selions were cultivated by peasants, often called tenants or serfs. The holdings of a manor also included woodland and pasture areas for common usage and fields belonging to the lord of the manor and the religious authorities, usually Roman Catholics in medieval Western Europe. The farmers customarily lived in separate houses in a nucleated village with a much larger manor house and church nearby. The open-field system necessitated co-operation among the residents of the manor.

<span class="mw-page-title-main">Enclosure</span> In England, appropriation of common land

Enclosure or Inclosure is a term, used in English landownership, that refers to the appropriation of "waste" or "common land" enclosing it and by doing so depriving commoners of their rights of access and privilege. Agreements to enclose land could be either through a formal or informal process. The process could normally be accomplished in three ways. First there was the creation of "closes", taken out of larger common fields by their owners. Secondly, there was enclosure by proprietors, owners who acted together, usually small farmers or squires, leading to the enclosure of whole parishes. Finally there were enclosures by Acts of Parliament.

<span class="mw-page-title-main">Shifting cultivation</span> Method of agriculture

Shifting cultivation is an agricultural system in which plots of land are cultivated temporarily, then abandoned while post-disturbance fallow vegetation is allowed to freely grow while the cultivator moves on to another plot. The period of cultivation is usually terminated when the soil shows signs of exhaustion or, more commonly, when the field is overrun by weeds. The period of time during which the field is cultivated is usually shorter than the period over which the land is allowed to regenerate by lying fallow.

<span class="mw-page-title-main">Slash-and-burn</span> Farming method in which trees are cut and burnt to clear land

Slash-and-burn agriculture is a farming method that involves the cutting and burning of plants in a forest or woodland to create a field called a swidden. The method begins by cutting down the trees and woody plants in an area. The downed vegetation, or "slash", is then left to dry, usually right before the rainiest part of the year. Then, the biomass is burned, resulting in a nutrient-rich layer of ash which makes the soil fertile, as well as temporarily eliminating weed and pest species. After about three to five years, the plot's productivity decreases due to depletion of nutrients along with weed and pest invasion, causing the farmers to abandon the field and move over to a new area. The time it takes for a swidden to recover depends on the location and can be as little as five years to more than twenty years, after which the plot can be slashed and burned again, repeating the cycle. In Bangladesh and India, the practice is known as jhum or jhoom.

<span class="mw-page-title-main">Agriculture in the Russian Empire</span> Overview of agriculture in the Russian Empire

Agriculture in the Russian Empire throughout the 19th-20th centuries Russia represented a major world force, yet it lagged technologically behind other developed countries. Imperial Russia was amongst the largest exporters of agricultural produce, especially wheat. The Free Economic Society of 1765 to 1919 made continuing efforts to improve farming techniques.

<span class="mw-page-title-main">Three-field system</span> Medieval crop rotation system

The three-field system is a regime of crop rotation in which a field is planted with one set of crops one year, a different set in the second year, and left fallow in the third year. A set of crops is rotated from one field to another. The technique was first used in China in the Eastern Zhou period, and was adopted in Europe in the medieval period.

<span class="mw-page-title-main">History of agriculture</span>

Agriculture began independently in different parts of the globe, and included a diverse range of taxa. At least eleven separate regions of the Old and New World were involved as independent centers of origin. The development of agriculture about 12,000 years ago changed the way humans lived. They switched from nomadic hunter-gatherer lifestyles to permanent settlements and farming.

<span class="mw-page-title-main">Agriculture in India</span> History of agriculture in India

The history of agriculture in India dates back to the neolothic. India ranks second worldwide in farm outputs. As per 2018, agriculture employed more than 50% of the Indian work force and contributed 17–18% to country's GDP.

<span class="mw-page-title-main">Agriculture in the United Kingdom</span> Economic sector in the United Kingdom

Agriculture in the United Kingdom uses 71% of the country's land area, employs 1% of its workforce and contributes 0.5% of its gross value added. The UK currently produces about 60% of its domestic food consumption.

<span class="mw-page-title-main">Agriculture in England</span>

Agriculture in England is today intensive, highly mechanised, and efficient by European standards, producing about 60% of food needs with only 2% of the labour force. It contributes around 2% of GDP. Around two thirds of production is devoted to livestock, one third to arable crops. Agriculture was heavily subsidised by the European Union's Common Agricultural Policy and continues to be so after Brexit. The GDP from the farming sector is argued by some to be a small return on the subsidies given but is argued by others that subsidy boosts food security and therefore is justified in the same way defence spending is.

Deficit irrigation (DI) is a watering strategy that can be applied by different types of irrigation application methods. The correct application of DI requires thorough understanding of the yield response to water and of the economic impact of reductions in harvest. In regions where water resources are restrictive it can be more profitable for a farmer to maximize crop water productivity instead of maximizing the harvest per unit land. The saved water can be used for other purposes or to irrigate extra units of land. DI is sometimes referred to as incomplete supplemental irrigation or regulated DI.

<span class="mw-page-title-main">Farming systems in India</span>

Farming systems in India are strategically utilized, according to the locations where they are most suitable. The farming systems that significantly contribute to the agriculture of India are subsistence farming, organic farming, industrial farming. Regions throughout India differ in types of farming they use; some are based on horticulture, ley farming, agroforestry, and many more. Due to India's geographical location, certain parts experience different climates, thus affecting each region's agricultural productivity differently. India is very dependent on its monsoon cycle for large crop yields. India's agriculture has an extensive background which goes back to at least 9 thousand years. In India, in the alluvial plains of the Indus River in Pakistan, the old cities of Mohenjo-Daro and Harappa experienced an apparent establishment of an organized farming urban culture. That society, known as the Harappan or Indus civilization, flourished until shortly after 4000 BP; it was much more comprehensive than those of Egypt or Babylonia and appeared earlier than analogous societies in northern China. Currently, the country holds the second position in agricultural production in the world. In 2007, agriculture and other industries made up more than 16% of India's GDP. Despite the steady decline in agriculture's contribution to the country's GDP, agriculture is the biggest industry in the country and plays a key role in the socio-economic growth of the country. India is the second-largest producer of wheat, rice, cotton, sugarcane, silk, groundnuts, and dozens more. It is also the second biggest harvester of vegetables and fruit, representing 8.6% and 10.9% of overall production, respectively. The major fruits produced by India are mangoes, papayas, sapota, and bananas. India also has the biggest number of livestock in the world, holding 281 million. In 2008, the country housed the second largest number of cattle in the world with 175 million.

<span class="mw-page-title-main">History of the potato</span> Domestication, spread, and popular usage of the potato in history

The potato was the first domesticated vegetable in the region of modern-day southern Peru and extreme northwestern Bolivia between 8000 and 5000 BCE. Cultivation of potatoes in South America may go back 10,000 years, but tubers do not preserve well in the archaeological record, making identification difficult. The earliest archaeologically verified potato tuber remains have been found at the coastal site of Ancón, dating to 2500 BC. Aside from actual remains, the potato is also found in the Peruvian archaeological record as a design influence of ceramic pottery, often in the shape of vessels. The potato has since spread around the world and has become a staple crop in most countries.

Convertible husbandry, also known as alternate husbandry or up-and-down husbandry, is a method of farming whereby strips of arable farmland were temporarily converted into grass pasture, known as leys. These remained under grass for up to 10 years before being ploughed under again, while some eventually became permanent pasturage. It was a process used during the 16th century through the 19th century by "which a higher proportion of land was used to support increasing numbers of livestock in many parts of England." Its adoption was an important component of the British Agricultural Revolution.

Food sovereignty is a highly influential idea in Bolivian political discourse. It is incorporated into multiple pieces of Bolivian legislation, including the 2009 constitution drafted underneath president Evo Morales. Food sovereignty fits into Morales' larger goal of the symbolic decolonization of Bolivia. First coined by indigenous and peasant worker advocacy organization Via Campesina, food sovereignty is the right for a state's people to produce and distribute culturally appropriate foods without the impingement of economic pressures created by foreign agribusiness producers. The presence of foreign agribusiness in Bolivia can be traced back to exploitative resource extraction that proliferated in South America with 19th century liberalism. Modern-day wholesale agribusiness production makes competition difficult for Bolivia's small-scale farmers, who often take out high-interest loans and consequently accumulate debt.

<span class="mw-page-title-main">Agriculture in the Middle Ages</span> Farming practices, crops, technology, and socioeconomics

Agriculture in the Middle Ages describes the farming practices, crops, technology, and agricultural society and economy of Europe from the fall of the Western Roman Empire in 476 to approximately 1500. The Middle Ages are sometimes called the Medieval Age or Period. The Middle Ages are also divided into the Early, High, and Late Middle Ages. The early modern period followed the Middle Ages.

This glossary of agriculture is a list of definitions of terms and concepts used in agriculture, its sub-disciplines, and related fields. For other glossaries relevant to agricultural science, see Glossary of biology, Glossary of ecology, Glossary of environmental science, and Glossary of botany.


  1. Richards, Denis; Hunt, J.W. (1983). An Illustrated History of Modern Britain: 1783–1980 (3rd ed.). Hong Kong: Longman Group UK LTD. p. 7. ISBN   978-0-582-33130-3.
  2. 1 2 Broadberry et al 2008, p. 52, figure 14.
  3. G. E. Mingay (ed.) (1977), The Agricultural Revolution: Changes in Agriculture 1650–1880, p. 3
  4. Peter Jones (2016), Agricultural Enlightenment: Knowledge, Technology, and Nature, 1750–1840, p. 7
  5. See also Joel Mokry (2009), The Enlightened Economy: Britain and the Industrial Revolution 1700–1850, p. 173
  6. For the European overall agricultural productivity, Robert Allen, “Economic structure and agricultural productivity in Europe, 1300-1800,” European Review of Economic History, 3, (2000): pp 1-25.
  7. The agricultural productivity per worker also rose across Europe in the 19th century. P. Bairoch, “Niveau de developpement economique de 1810 a 1910,” Annales: economies, societes, civilisations, 20, (1965): pp 1091—17.
  8. In France in the 18th century, agricultural output grew by 33%. Robert Allen, “Economic structure and agricultural productivity in Europe, 1300-1800,” European Review of Economic History, 3, (2000): p 17.
  9. Also for France, P. T. Hoffman, Growth in a Traditional Society: The French Countryside, 1450-1815, New Jersey: Princeton University Press, 1996, p 135.
  10. Also for France, William Newell, “The Agricultural Revolution in Nineteenth-Century France,” Journal of Economic History, vol. 33, no. 4 (1973), pp. 697-731,
  11. In Prussia, the share of non-agricultural manpower rose by 30% between 1815 and 1849. Richard Tilly, “Capital formation in Germany in the nineteenth century,” Cambridge Economic History of Europe, eds. Peter Mathias, & M. M. Postan, Cambridge University Press, 1978, vol 7, p 441.
  12. Also for Prussia, Michael Kopsidis, & Nikolaus Wolf, “Agricultural Productivity across Prussia during the Industrial Revolution,” Journal of Economic History, vol. 72, no. 3 (2012), pp. 634-670.
  13. Also for Prussia, Christof Dipper, Deutsche Geschichte, 1648–1789, Frankfurt: Suhrkamp, 1991, pp 91-102.
  14. Also for Prussia, Walther Hoffmann, Das Wachstum der deutschen Wirtschaft seit der Mitte des 19. Jahrhunderts, Berlin: Springer, 1965, pp 202-215.
  15. In Russia in 1867 – 1915, cereal yields increased by 48% and in 1861 serfdom was abolished, indicating increase in output per peasant. Владимир Обухов, "Движение урожаев зерновых культур в Европейской России в период 1883-1915," Исторические Материалы, 2015,
  16. Also for Russia, В. Г. Растянников, & И. В. Дерюгина, Урожайность хлебов в России. 1795-2007, Москва: Институт востоковедения, 2009, p 71.
  17. J. I. Nakamura, Agricultural Production and the Economic Development of Japan, 1873–1922, Princeton University Press, 1966.
  18. In the US between 1860 and 1890, the production of basic agricultural commodities, such as wheat, corn and cotton, outstripped all previous figures. Agricultural Statistics, 1910. Washington: US Department of Agriculture, 1911.
  19. The productivity per farmer also rose. By 1880, the farm population in the US declined to 43.8% of the total population despite large increase in the farmland since the 1860s. “Historical Statistics of the United States, Colonial Times to 1970,” US Census Bureau, 1975, p 457,
  20. Wayne D. Rasmussen, “The Civil War: A Catalyst of Agricultural Revolution,” Agricultural History, vol. 39, no. 4 (1965), pp 187-195.
  21. Jan de Vries, & Ad van der Woude, The First Modern Economy: Success, Failure, and Perseverance of the Dutch Economy, 1500-1815, Cambridge University Press, 1997, pp 672-673, 710.
  22. Jan Luitenvan Zanden, & Basvan Leeuwen, “Persistent but not consistent: The growth of national income in Holland 1347–1807,” Explorations in Economic History, vol 49, no 2, (2012): pp 119-130,
  23. Robert Allen, “Economic structure and agricultural productivity in Europe, 1300-1800,” European Review of Economic History, 3, (2000): p 11.
  24. 1 2 Overton 1996 , p. 1
  25. R. W. Sturgess, "The Agricultural Revolution on the English Clays." Agricultural History Review (1966): 104-121. in JSTOIR
  26. Apostolides, Alexander; Broadberry, Stephen; Campbell, Bruce; Overton, Mark; van Leeuwen, Bas (26 November 2008). "English Agricultural Output and Labour Productivity, 1250–1850: Some Preliminary Estimates" (PDF). Retrieved 1 May 2019.
  27. Overton 1996 , p. 117
  28. Overton 1996 , p. 167
  29. Overton 1996 , pp. 116, 117
  30. Overton, Mark (17 February 2011). "Agricultural Revolution in England 1500–1850". British History. BBC History. Retrieved 1 May 2019.
  31. Overton 1996, p. 77.
  32. Overton 1996
  33. 1 2 3 Temple 1986 , pp. 18, 20
  34. "The Rotherham Plough". Rotherham: The Unofficial Website. Archived from the original on 14 August 2014. Retrieved 17 May 2017.
  35. "The Rotherham Plough". Archived from the original on 24 September 2015. Retrieved 17 May 2017.
  36. William L. Langer, "American Foods and Europe's Population Growth 1750–1850", Journal of Social History, 8#2 (1975), pp. 51–66. Pages 52-54.
  37. Langer, p. 54.
  38. Langer, p. 56-58.
  39. Marion Eugene Ensminger and Audrey H. Ensminger. "Foods & Nutrition Encyclopedia, Two Volume Set." CRC-Press: 1994. Page 1104.
  40. Langer, p. 58-60.
  41. Landes, David S. (1969). The Unbound Prometheus: Technological Change and Industrial Development in Western Europe from 1750 to the Present. Cambridge University Press. p. 18. ISBN   978-0-521-09418-4.
  42. Overton 1996 , pp. 134–6
  43. Overton 1996 , pp. 135, 145
  44. Landes, David. S. (1969). The Unbound Prometheus: Technological Change and Industrial Development in Western Europe from 1750 to the Present. Cambridge, New York: Press Syndicate of the University of Cambridge. p. 46. ISBN   978-0-521-09418-4.
  45. Taylor, George Rogers (1969). The Transportation Revolution, 1815-1860. p. 132. ISBN   978-0873321013.
  46. Overton 1996 , pp. 137–140
  47. Grubler, Arnulf (1990). The Rise and Fall of Infrastructures: Dynamics of Evolution and Technological Change in transport (PDF). Heidelberg and New York: Physica-Verlag. Archived from the original (PDF) on 2012-03-01. Retrieved 2014-03-02.
  48. Overton 1996 , pp. 205–6
  49. Baten, Jörg; Tollnek, Franziska (2017). "Farmers at the Heart of the "Human Capital Revolution"? Decomposing the Numeracy Increase in Early Modern Europe". The Economic History Review. 70 (3): 779–809. doi:10.1111/ehr.12382. S2CID   151460564.
  50. "Robert Bakewell (1725 - 1795)". BBC History. Retrieved 20 July 2012.
  51. John R. Walton, "The diffusion of the improved Shorthorn breed of cattle in Britain during the eighteenth and nineteenth centuries." Transactions of the Institute of British Geographers (1984): 22-36. in JSTOR
  52. John R. Walton, "Pedigree and the national cattle herd circa 1750–1950." Agricultural History Review (1986): 149-170. in JSTOR
  53. Broadberry et al 2008, p. 44, table 10.
  54. Coprolite Fertilizer Industry in Britain Archived 2011-07-15 at the Wayback Machine . Accessed 3 April 2012.
  55. British food puzzle Archived 2012-04-15 at the Wayback Machine . Accessed 6 April 2012.
  56. "English Agricultural Output and Labour Productivity, 1250–1850: Some Preliminary Estimates". Accessed 21 March 2012.
  57. British Agricultural Statistics. Accessed 6 April 2011.
  58. "Late Blight of Potatoes and Tomatoes Fact sheet". Retrieved 6 April 2012.
  59. Landes, David S. (1969). The Unbound Prometheus: Technological Change and Industrial Development in Western Europe from 1750 to the Present. Cambridge University Press. p. 22. ISBN   978-0-521-09418-4.
  60. Landes, David S. (1969). The Unbound Prometheus: Technological Change and Industrial Development in Western Europe from 1750 to the Present. Cambridge University Press. p. 23. ISBN   978-0-521-09418-4.
  61. Temple 1986 , p. [ page needed ]
  62. Temple 1986 , pp. 20–26
  63. Hounshell, David A. (1984), From the American System to Mass Production, 1800–1932: The Development of Manufacturing Technology in the United States, Baltimore, Maryland: Johns Hopkins University Press, ISBN   978-0-8018-2975-8, LCCN   83016269, OCLC   1104810110
  64. Thirsk. 'Walter Blith' in Oxford Dictionary of National Biography online edn, Jan 2008
  65. Merson, John (1990). The Genius That Was China: East and West in the Making of the Modern World . Woodstock, New York: The Overlook Press. pp.  23–6. ISBN   978-0-87951-397-9A companion to the PBS Series “The Genius That Was China”{{cite book}}: CS1 maint: postscript (link)
  66. Temple, Robert; Joseph Needham (1986). The Genius of China: 3000 years of science, discovery and invention . New York: Simon and Schuster. p.  26. ISBN   9780671620288Temple estimates Chinese crop yields were between 10 and twenty times higher than in the West. This is not the case. Perkins finds an average Chinese grain yield about twice the late 18th-century European average. China's advantage was in intensive land use and high labour inputs, rather than in individual crop yields (except for rice, suited only to some parts of Mediterranean Europe).{{cite book}}: CS1 maint: postscript (link)


Further reading