This article needs additional citations for verification .(December 2020) |
Agriculture |
---|
Agricultureportal |
Agricultural technology or agrotechnology (abbreviated agtech, agritech, AgriTech, or agrotech) is the use of technology in agriculture, horticulture, and aquaculture with the aim of improving yield, efficiency, and profitability. Agricultural technology can be products, services or applications derived from agriculture that improve various input and output processes. [1] [2]
Advances in agricultural science, agronomy, and agricultural engineering have led to applied developments in agricultural technology. [3] [4]
This section needs expansion. You can help by adding to it. (November 2020) |
The history of agriculture has been shaped by technological advances. Agricultural technology dates back thousands of years. Historians have described a number of agricultural revolutions, which identify major shifts in agricultural practice and productivity. These revolutions have been closely connected to technological improvements.
Around 10,000 years ago, the Neolithic Revolution catalyzed an epochal transformation. Humanity transitioned from nomadic hunter-gatherer societies to stable agricultural communities. This transition bore witness to the domestication of vital plants and animals, including wheat, barley, and livestock, fundamentally altering the agricultural landscape. The surplus food production that ensued fueled population growth and laid the cornerstone for nascent civilizations. Irrigation technology was developed independently by a number of different cultures, with the earliest known examples dated to the 6th millennium BCE in Khuzistan in the south-west of present-day Iran. [5] [6] The ancient Egyptian use of the Nile River's flooding, marked another significant advancement.
The Roman era ushered in notable contributions to agricultural technology. The Romans introduced innovative implements, such as the Roman plough, a notable refinement in soil cultivation. In tandem, they compiled comprehensive agricultural manuals like "De Re Rustica," serving as invaluable records of contemporary farming techniques.
The Middle Ages bequeathed significant agricultural progress. Concepts like crop rotation and the three-field system enhanced soil fertility and crop yields, while the introduction of the heavy plow, driven by draft animals, facilitated the cultivation of previously uncultivated lands.
A major turning point for agricultural technology is the Industrial Revolution, which introduced agricultural machinery to mechanise the labour of agriculture, greatly increasing farm worker productivity. Revolutionary inventions like the seed drill, mechanical reaper, and steam-powered tractors reshaped the farming landscape. This period also witnessed the establishment of agricultural societies and colleges dedicated to advancing farming methodologies. In modern mechanised agriculture powered machinery has replaced many farm jobs formerly carried out by manual labour or by working animals such as oxen, horses and mules.
Advances in the 19th century included the development of modern weather forecasting and invention of barbed wire. Improvement to portable engines and threshing machines led to their widespread adoption. Guano became a popular fertilizer in the 1800s and was widely extracted for this purpose. Guano use rapidly declined after 1910 with the development of the Haber–Bosch process for extracting nitrogen from the atmosphere.Citation needed
The 20th century saw major advances in agricultural technologies, including the development of synthetic fertilizers and pesticides, and new agricultural machinery including mass-produced tractors and agricultural aircraft for aerial application of pesticides. More recent advances have included agricultural plastics, genetically modified crops, improved drip irrigation, integrated pest management, and soilless farming techniques such as hydroponics, aquaponics, and aeroponics.
In the first decades of the 21st century, Information Age technologies have been increasingly applied to agriculture. Agricultural robots, agricultural drones and driverless tractors have found regular use on farms, while digital agriculture and precision agriculture make use of extensive data collection and computation to improve farm efficiency. [7] Precision agriculture includes such areas as precision beekeeping, precision livestock farming, and precision viticulture.
Israel's agtech scene is considered second only to the US. [8] Israel holds several institutions of agricultural research including the Volcani center. [9] Israeli milk cows have the highest production of milk in the world. [9] The modern cherry tomato was developed in Israel. [9]
The following is a 2021 list of by startup genome ranking Global Agtech & New Food tech ranking. [10]
Rank | Hub |
---|---|
1 | Sillicon Valley |
2 | New York City |
3 | London |
4 | Tel Aviv |
5 | Denver-Boulder |
6 | Los Angeles |
7 | Boston |
8 | Beijing |
9 | Vancouver |
10 | Research Triangle |
11 | Toronto-Waterloo |
12 | Seattle |
13 | Bengaluru |
14 | Amsterdam-Delta |
15 | Stockholm |
16 | Shanghai |
17 | Singapore |
18 | San Diego |
19 | Sydney |
20 | Washington D.C |
21 | Paris |
22 | Hangzhou |
23 | New Zealand |
24 | Shenzhen |
26-30 | Tokyo |
Agriculture encompasses crop and livestock production, aquaculture, and forestry for food and non-food products. Agriculture was a key factor in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities. While humans started gathering grains at least 105,000 years ago, nascent farmers only began planting them around 11,500 years ago. Sheep, goats, pigs, and cattle were domesticated around 10,000 years ago. Plants were independently cultivated in at least 11 regions of the world. In the 20th century, industrial agriculture based on large-scale monocultures came to dominate agricultural output.
The following outline is provided as an overview of and topical guide to agriculture:
A farm is an area of land that is devoted primarily to agricultural processes with the primary objective of producing food and other crops; it is the basic facility in food production. The name is used for specialized units such as arable farms, vegetable farms, fruit farms, dairy, pig and poultry farms, and land used for the production of natural fiber, biofuel, and other commodities. It includes ranches, feedlots, orchards, plantations and estates, smallholdings, and hobby farms, and includes the farmhouse and agricultural buildings as well as the land. In modern times, the term has been extended so as to include such industrial operations as wind farms and fish farms, both of which can operate on land or at sea.
Precision agriculture (PA) is a farming management strategy based on observing, measuring and responding to temporal and spatial variability to improve agricultural production sustainability. It is used in both crop and livestock production. Precision agriculture often employs technologies to automate agricultural operations, improving their diagnosis, decision-making or performing. The goal of precision agriculture research is to define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources.
An agrarian society, or agricultural society, is any community whose economy is based on producing and maintaining crops and farmland. Another way to define an agrarian society is by seeing how much of a nation's total production is in agriculture. In agrarian society, cultivating the land is the primary source of wealth. Such a society may acknowledge other means of livelihood and work habits but stresses the importance of agriculture and farming. Agrarian societies have existed in various parts of the world as far back as 10,000 years ago and continue to exist today. They have been the most common form of socio-economic organization for most of recorded human history.
Mechanised agriculture or agricultural mechanization is the use of machinery and equipment, ranging from simple and basic hand tools to more sophisticated, motorized equipment and machinery, to perform agricultural operations. In modern times, powered machinery has replaced many farm task formerly carried out by manual labour or by working animals such as oxen, horses and mules.
Agriculture began independently in different parts of the globe, and included a diverse range of taxa. At least eleven separate regions of the Old and New World were involved as independent centers of origin. The development of agriculture about 12,000 years ago changed the way humans lived. They switched from nomadic hunter-gatherer lifestyles to permanent settlements and farming.
Traditional farming was the original type of agriculture, and has been practiced for thousands of years. All traditional farming is now considered to be "organic farming" although at the time there were no known inorganic methods. For example, forest gardening, a fully organic food production system which dates from prehistoric times, is thought to be the world's oldest and most resilient agroecosystem. The industrial revolution introduced inorganic methods, most of which were not well developed and had serious side effects. An organic movement began in the 1940s as a reaction to agriculture's growing reliance on synthetic fertilizers and pesticides. The history of this modern revival of organic farming dates back to the first half of the 20th century at a time when there was a growing reliance on these new synthetic, non-organic methods.
Agricultural research in Israel is based on close cooperation and interaction between scientists, consultants, farmers and agriculture-related industries. Israel's climate ranges from Mediterranean (Csa) to semi-arid and arid. Shortage of irrigation water and inadequate precipitation in some parts of the country are major constraints facing Israeli agriculture. Through extensive greenhouses production, vegetables, fruits and flowers are grown for export to the European markets during the winter off-season.
Industrial agriculture is a form of modern farming that refers to the industrialized production of crops and animals and animal products like eggs or milk. The methods of industrial agriculture include innovation in agricultural machinery and farming methods, genetic technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, the application of patent protection to genetic information, and global trade. These methods are widespread in developed nations and increasingly prevalent worldwide. Most of the meat, dairy, eggs, fruits and vegetables available in supermarkets are produced in this way.
An agricultural robot is a robot deployed for agricultural purposes. The main area of application of robots in agriculture today is at the harvesting stage. Emerging applications of robots or drones in agriculture include weed control, cloud seeding, planting seeds, harvesting, environmental monitoring and soil analysis. According to Verified Market Research, the agricultural robots market is expected to reach $11.58 billion by 2025.
Intensive crop farming is a modern industrialized form of crop farming. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations.
Agriculture in England is today intensive, highly mechanised, and efficient by European standards, producing about 60% of food needs with only 2% of the labour force. It contributes around 2% of GDP. Around two thirds of production is devoted to livestock, one third to arable crops. Agriculture is heavily subsidised by the European Union's Common Agricultural Policy.
Agricultural engineering, also known as agricultural and biosystems engineering, is the field of study and application of engineering science and designs principles for agriculture purposes, combining the various disciplines of mechanical, civil, electrical, food science, environmental, software, and chemical engineering to improve the efficiency of farms and agribusiness enterprises as well as to ensure sustainability of natural and renewable resources.
Agricultural machinery relates to the mechanical structures and devices used in farming or other agriculture. There are many types of such equipment, from hand tools and power tools to tractors and the farm implements that they tow or operate. Machinery is used in both organic and nonorganic farming. Especially since the advent of mechanised agriculture, agricultural machinery is an indispensable part of how the world is fed.
A driverless tractor is an autonomous farm vehicle that delivers a high tractive effort at slow speeds for the purposes of tillage and other agricultural tasks. It is considered driverless because it operates without the presence of a human inside the tractor itself. Like other unmanned ground vehicles, they are programmed to independently observe their position, decide speed, and avoid obstacles such as people, animals, or objects in the field while performing their task. The various driverless tractors are split into full autonomous technology and supervised autonomy. The idea of the driverless tractor appears as early as 1940, but the concept has significantly evolved in the last few years. The tractors use GPS and other wireless technologies to farm land without requiring a driver. They operate simply with the aid of a supervisor monitoring the progress at a control station or with a manned tractor in lead.
The Central Institute of Agricultural Engineering (CIAE) is a higher seat of learning, research and development in the field of agricultural engineering, situated in the lake city of Bhopal, Madhya Pradesh, India. It is an autonomous body, an Indian Council of Agricultural Research subsidiary, under the Ministry of Agriculture & Farmer's Welfare, Government of India.
Digital agriculture, sometimes known as smart farming or e-agriculture, is tools that digitally collect, store, analyze, and share electronic data and/or information in agriculture. The Food and Agriculture Organization of the United Nations has described the digitalization process of agriculture as the digital agricultural revolution. Other definitions, such as those from the United Nations Project Breakthrough, Cornell University, and Purdue University, also emphasize the role of digital technology in the optimization of food systems.
This glossary of agriculture is a list of definitions of terms and concepts used in agriculture, its sub-disciplines, and related fields, including horticulture, animal husbandry, agribusiness, and agricultural policy. For other glossaries relevant to agricultural science, see Glossary of biology, Glossary of ecology, Glossary of environmental science, and Glossary of botanical terms.