Agricultural biotechnology

Last updated

Agricultural biotechnology, also known as agritech, is an area of agricultural science involving the use of scientific tools and techniques, including genetic engineering, molecular markers, molecular diagnostics, vaccines, and tissue culture, to modify living organisms: plants, animals, and microorganisms. [1] Crop biotechnology is one aspect of agricultural biotechnology which has been greatly developed upon in recent times. Desired trait are exported from a particular species of Crop to an entirely different species. These transgene crops possess desirable characteristics in terms of flavor, color of flowers, growth rate, size of harvested products and resistance to diseases and pests.

Contents

History

Farmers have manipulated plants and animals through selective breeding for decades of thousands of years in order to create desired traits. In the 20th century, a surge in technology resulted in an increase in agricultural biotechnology through the selection of traits like the increased yield, pest resistance, drought resistance, and herbicide resistance. The first food product produced through biotechnology was sold in 1990, and by 2003, 7 million farmers were utilizing biotech crops. More than 85% of these farmers were located in developing countries. [2]

Crop modification techniques

Traditional breeding

Traditional crossbreeding [3] has been used for centuries to improve crop quality and quantity. Crossbreeding mates two sexually compatible species to create a new and special variety with the desired traits of the parents. For example, the honeycrisp apple exhibits a specific texture and flavor due to the crossbreeding of its parents. In traditional practices, pollen from one plant is placed on the female part of another, which leads to a hybrid that contains genetic information from both parent plants. Plant breeders select the plants with the traits they're looking to pass on and continue to breed those plants. Note that crossbreeding can only be utilized within the same or closely related species.

Mutagenesis

Mutations can occur randomly in the DNA of any organism. In order to create variety within crops, scientists can randomly induce mutations within plants. Mutagenesis uses radioactivity to induce random mutations in the hopes of stumbling upon the desired trait. Scientists can use mutating chemicals such as ethyl methanesulfonate, or radioactivity to create random mutations within the DNA. Atomic gardens are used to mutate crops. A radioactive core is located in the center of a circular garden and raised out of the ground to radiate the surrounding crops, generating mutations within a certain radius. Mutagenesis through radiation was the process used to produce ruby red grapefruits.

Polyploidy

Polyploidy can be induced to modify the number of chromosomes in a crop in order to influence its fertility or size. Usually, organisms have two sets of chromosomes, otherwise known as a diploidy. However, either naturally or through the use of chemicals, that number of chromosomes can change, resulting in fertility changes or size modification within the crop. Seedless watermelons are created in this manner; a 4-set chromosome watermelon is crossed with a 2-set chromosome watermelon to create a sterile (seedless) watermelon with three sets of chromosomes.

Protoplast fusion

Protoplast fusion is the joining of cells or cell components to transfer traits between species. For example, the trait of male sterility is transferred from radishes to red cabbages by protoplast fusion. This male sterility helps plant breeders make hybrid crops. [4]

RNA interference

RNA interference (RNAIi) is the process in which a cell's RNA to protein mechanism is turned down or off in order to suppress genes. This method of genetic modification works by interfering with messenger RNA to stop the synthesis of proteins, effectively silencing a gene.

Transgenics

Transgenics involves the insertion of one piece of DNA into another organism's DNA in order to introduce new genes into the original organism. This addition of genes into an organism's genetic material creates a new variety with desired traits. The DNA must be prepared and packaged in a test tube and then inserted into the new organism. New genetic information can be inserted with gene guns/biolistics. An example of a gene gun transgenic is the rainbow papaya, which is modified with a gene that gives it resistance to the papaya ringspot virus. [5]

Genome editing

Genome editing is the use of an enzyme system to modify the DNA directly within the cell. Genome editing is used to develop herbicide resistant canola to help farmers control weeds.

Improved nutritional content

Agricultural biotechnology has been used to improve the nutritional content of a variety of crops in an effort to meet the needs of an increasing population. Genetic engineering can produce crops with a higher concentration of vitamins. For example, golden rice contains three genes that allow plants to produce compounds that are converted to vitamin A in the human body. This nutritionally improved rice is designed to combat the world's leading cause of blindness—vitamin A deficiency. Similarly, the Banana 21 project [6] has worked to improve the nutrition in bananas to combat micronutrient deficiencies in Uganda. By genetically modifying bananas to contain vitamin A and iron, Banana 21 has helped foster a solution to micronutrient deficiencies through the vessel of a staple food and major starch source in Africa. Additionally, crops can be engineered to reduce toxicity or to produce varieties with removed allergens.

Genes and traits of interest for crops

Agronomic traits

Insect resistance

One highly sought after trait is insect resistance. This trait increases a crop's resistance to pests and allows for a higher yield. An example of this trait are crops that are genetically engineered to make insecticidal proteins originally discovered in ( Bacillus thuringiensis ). Bacillus thuringiensis is a bacterium that produces insect repelling proteins that are non-harmful to humans. The genes responsible for this insect resistance have been isolated and introduced into many crops. Bt corn and cotton are now commonplace, and cowpeas, sunflower, soybeans, tomatoes, tobacco, walnut, sugar cane, and rice are all being studied in relation to Bt.

Herbicide tolerance

Weeds have proven to be an issue for farmers for thousands of years; they compete for soil nutrients, water, and sunlight and prove deadly to crops. Biotechnology has offered a solution in the form of herbicide tolerance. Chemical herbicides are sprayed directly on plants in order to kill weeds and therefore competition, and herbicide resistant crops have to the opportunity to flourish.

Disease resistance

Often, crops are afflicted by disease spread through insects (like aphids). Spreading disease among crop plants is incredibly difficult to control and was previously only managed by completely removing the affected crop. The field of agricultural biotechnology offers a solution through genetically engineering virus resistance. Developing GE disease-resistant crops now include cassava, maize, and sweet potato.

Temperature tolerance

Agricultural biotechnology can also provide a solution for plants in extreme temperature conditions. In order to maximize yield and prevent crop death, genes can be engineered that help to regulate cold and heat tolerance. For example, tobacco plants have been genetically modified to be more tolerant to hot and cold conditions, with genes originally found in Carica papaya. [7] Other traits include water use efficiency, nitrogen use efficiency and salt tolerance.

Quality traits

Quality traits include increased nutritional or dietary value, improved food processing and storage, or the elimination of toxins and allergens in crop plants.

Common GMO crops

Currently, only a small number of genetically modified crops are available for purchase and consumption in the United States. The USDA has approved soybeans, corn, canola, sugar beets, papaya, squash, alfalfa, cotton, apples, and potatoes. [8] GMO apples (arctic apples) are non-browning apples and eliminate the need for anti-browning treatments, reduce food waste, and bring out flavor. The production of Bt cotton has skyrocketed in India, with 10 million hectares planted for the first time in 2011, resulting in a 50% insecticide application reduction. In 2014, Indian and Chinese farmers planted more than 15 million hectares of Bt cotton. [9]

Safety testing and government regulations

Agricultural biotechnology regulation in the US falls under three main government agencies: The Department of Agriculture (USDA), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA). The USDA must approve the release of any new GMOs, EPA controls the regulation of insecticide, and the FDA evaluates the safety of a particular crop sent to market. On average, it takes nearly 13 years and $130 million of research and development for a genetically modified organism to come to market. The regulation process takes up to 8 years in the United States. [10] The safety of GMOs has become a topic of debate worldwide, but scientific articles are being conducted to test the safety of consuming GMOs in addition to the FDA's work. In one such article, it was concluded that Bt rice did not adversely affect digestion and did not induce horizontal gene transfer. [11]

Related Research Articles

<span class="mw-page-title-main">Biotechnology</span> Use of living systems and organisms to develop or make useful products

Biotechnology is a multidisciplinary field that involves the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services.

<span class="mw-page-title-main">Genetically modified maize</span> Genetically modified crop

Genetically modified maize (corn) is a genetically modified crop. Specific maize strains have been genetically engineered to express agriculturally-desirable traits, including resistance to pests and to herbicides. Maize strains with both traits are now in use in multiple countries. GM maize has also caused controversy with respect to possible health effects, impact on other insects and impact on other plants via gene flow. One strain, called Starlink, was approved only for animal feed in the US but was found in food, leading to a series of recalls starting in 2000.

<span class="mw-page-title-main">Genetically modified organism</span> Organisms whose genetic material has been altered using genetic engineering methods

A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), including animals, plants, and microorganisms.

<span class="mw-page-title-main">Genetic engineering</span> Manipulation of an organisms genome

Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA. A construct is usually created and used to insert this DNA into the host organism. The first recombinant DNA molecule was made by Paul Berg in 1972 by combining DNA from the monkey virus SV40 with the lambda virus. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can be inserted randomly, or targeted to a specific part of the genome.

<span class="mw-page-title-main">Genetically modified food</span> Foods produced from organisms that have had changes introduced into their DNA

Genetically modified foods, also known as genetically engineered foods, or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using various methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.

The term modifications in genetics refers to both naturally occurring and engineered changes in DNA. Incidental, or natural mutations occur through errors during replication and repair, either spontaneously or due to environmental stressors. Intentional modifications are done in a laboratory for various purposes, developing hardier seeds and plants, and increasingly to treat human disease. The use of gene editing technology remains controversial.

<span class="mw-page-title-main">Genetically modified crops</span> Plants used in agriculture

Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

Since the advent of genetic engineering in the 1970s, concerns have been raised about the dangers of the technology. Laws, regulations, and treaties were created in the years following to contain genetically modified organisms and prevent their escape. Nevertheless, there are several examples of failure to keep GM crops separate from conventional ones.

<span class="mw-page-title-main">Genetically modified food controversies</span> Controversies over GMO food

Genetically modified food controversies are disputes over the use of foods and other goods derived from genetically modified crops instead of conventional crops, and other uses of genetic engineering in food production. The disputes involve consumers, farmers, biotechnology companies, governmental regulators, non-governmental organizations, and scientists. The key areas of controversy related to genetically modified food are whether such food should be labeled, the role of government regulators, the objectivity of scientific research and publication, the effect of genetically modified crops on health and the environment, the effect on pesticide resistance, the impact of such crops for farmers, and the role of the crops in feeding the world population. In addition, products derived from GMO organisms play a role in the production of ethanol fuels and pharmaceuticals.

<span class="mw-page-title-main">Genetically modified plant</span> Plants with human-introduced genes from other organisms

Genetically modified plants have been engineered for scientific research, to create new colours in plants, deliver vaccines, and to create enhanced crops. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. Many plant cells are pluripotent, meaning that a single cell from a mature plant can be harvested and then under the right conditions form a new plant. This ability is most often taken advantage by genetic engineers through selecting cells that can successfully be transformed into an adult plant which can then be grown into multiple new plants containing transgene in every cell through a process known as tissue culture.

<span class="mw-page-title-main">Genetic pollution</span> Problematic gene flow into wild populations

Genetic pollution is a term for uncontrolled gene flow into wild populations. It is defined as "the dispersal of contaminated altered genes from genetically engineered organisms to natural organisms, esp. by cross-pollination", but has come to be used in some broader ways. It is related to the population genetics concept of gene flow, and genetic rescue, which is genetic material intentionally introduced to increase the fitness of a population. It is called genetic pollution when it negatively impacts the fitness of a population, such as through outbreeding depression and the introduction of unwanted phenotypes which can lead to extinction.

<span class="mw-page-title-main">Plant genetics</span> Study of genes and heredity in plants

Plant genetics is the study of genes, genetic variation, and heredity specifically in plants. It is generally considered a field of biology and botany, but intersects frequently with many other life sciences and is strongly linked with the study of information systems. Plant genetics is similar in many ways to animal genetics but differs in a few key areas.

The United States is the largest grower of commercial crops that have been genetically engineered in the world, but not without domestic and international opposition.

<span class="mw-page-title-main">Genetically modified rice</span>

Genetically modified rice are rice strains that have been genetically modified. Rice plants have been modified to increase micronutrients such as vitamin A, accelerate photosynthesis, tolerate herbicides, resist pests, increase grain size, generate nutrients, flavors or produce human proteins.

<span class="mw-page-title-main">Plant breeding</span> Humans changing traits, ornamental/crops

Plant breeding is the science of changing the traits of plants in order to produce desired characteristics. It has been used to improve the quality of nutrition in products for humans and animals. The goals of plant breeding are to produce crop varieties that boast unique and superior traits for a variety of applications. The most frequently addressed agricultural traits are those related to biotic and abiotic stress tolerance, grain or biomass yield, end-use quality characteristics such as taste or the concentrations of specific biological molecules and ease of processing.

<span class="mw-page-title-main">History of genetic engineering</span>

Genetic engineering is the science of manipulating genetic material of an organism. The first artificial genetic modification accomplished using biotechnology was transgenesis, the process of transferring genes from one organism to another, first accomplished by Herbert Boyer and Stanley Cohen in 1973. It was the result of a series of advancements in techniques that allowed the direct modification of the genome. Important advances included the discovery of restriction enzymes and DNA ligases, the ability to design plasmids and technologies like polymerase chain reaction and sequencing. Transformation of the DNA into a host organism was accomplished with the invention of biolistics, Agrobacterium-mediated recombination and microinjection. The first genetically modified animal was a mouse created in 1974 by Rudolf Jaenisch. In 1976 the technology was commercialised, with the advent of genetically modified bacteria that produced somatostatin, followed by insulin in 1978. In 1983 an antibiotic resistant gene was inserted into tobacco, leading to the first genetically engineered plant. Advances followed that allowed scientists to manipulate and add genes to a variety of different organisms and induce a range of different effects. Plants were first commercialized with virus resistant tobacco released in China in 1992. The first genetically modified food was the Flavr Savr tomato marketed in 1994. By 2010, 29 countries had planted commercialized biotech crops. In 2000 a paper published in Science introduced golden rice, the first food developed with increased nutrient value.

Genetic engineering in Hawaii is a hotly contested political topic. The Hawaiian islands counties of Kauai, Hawaii and Maui passed or considered laws restricting the practice within their borders due to concerns about the health, the environment and impacts on conventional and organic agriculture.

<i>GMO OMG</i> 2013 American film

GMO OMG is a 2013 American pseudoscientific documentary film which takes a negative view towards the use of genetically modified organisms used in the production of food, in the United States. The film focuses on Monsanto, a multinational agrochemical and agricultural biotechnology corporation, and their role in the food industry alongside the effects of GMOs and how they are generated.

India and China are the two largest producers of genetically modified products in Asia. India currently only grows GM cotton, while China produces GM varieties of cotton, poplar, petunia, tomato, papaya and sweet pepper. Cost of enforcement of regulations in India are generally higher, possibly due to the greater influence farmers and small seed firms have on policy makers, while the enforcement of regulations was more effective in China. Other Asian countries that grew GM crops in 2011 were Pakistan, the Philippines and Myanmar. GM crops were approved for commercialisation in Bangladesh in 2013 and in Vietnam and Indonesia in 2014.

References

  1. "What is Agricultural Biotechnology?" (PDF). Cornell University. Retrieved 3 February 2015.
  2. "Agricultural Biotechnology" (PDF). cornell.edu. PBS, ABSP II, US Agency for International Development. 2004. Retrieved 1 Dec 2016.
  3. "Infographic: Crop Modification Techniques - Biology Fortified, Inc". Biology Fortified, Inc. Archived from the original on 2016-04-14. Retrieved 2016-12-05.
  4. De Beuckeleer, Mariani; De Beuckeleer, Celestina; De Beuckeleer, Marc; Truettner, Jessie; Leemans, Jan; Goldberg, Robert (1990). "Induction of Male Sterility in Plants by a Chimaeric Ribonuclease Gene". Nature. 437.6295 (6295): 737–41. Bibcode:1990Natur.347..737M. doi:10.1038/347737a0. hdl: 2066/17394 . S2CID   2755373.
  5. "The Gene Gun That Saved Hawaii". American Council on Science and Health . 2016-01-21. Retrieved 2021-12-01.
  6. "About Banana21". www.banana21.org. Retrieved 2016-12-05.
  7. Figueroa-Yañez, Luis; Pereira-Santana, Alejandro; Arroyo-Herrera, Ana; Rodriguez-Corona, Ulises; Sanchez-Teyer, Felipe; Espadas-Alcocer, Jorge; Espadas-Gil, Francisco; Barredo-Pool, Felipe; Castaño, Enrique (2016-10-20). "RAP2.4a Is Transported through the Phloem to Regulate Cold and Heat Tolerance in Papaya Tree (Carica papaya cv. Maradol): Implications for Protection Against Abiotic Stress". PLOS ONE. 11 (10): e0165030. Bibcode:2016PLoSO..1165030F. doi: 10.1371/journal.pone.0165030 . ISSN   1932-6203. PMC   5072549 . PMID   27764197.
  8. "MVD". mvgs.iaea.org. Retrieved 2016-12-05.
  9. "International Service for the Acquisition of Agri-biotech Applications - ISAAA.org". www.isaaa.org. Retrieved 2016-12-05.
  10. "What does it take to bring a new GM product to market? #GMOFAQ". GMO FAQ. Retrieved 2016-12-05.
  11. Zhao, Kai; Ren, Fangfang; Han, Fangting; Liu, Qiwen; Wu, Guogan; Xu, Yan; Zhang, Jian; Wu, Xiao; Wang, Jinbin (2016-10-05). "Edible Safety Assessment of Genetically Modified Rice T1C-1 for Sprague Dawley Rats through Horizontal Gene Transfer, Allergenicity and Intestinal Microbiota". PLOS ONE. 11 (10): e0163352. Bibcode:2016PLoSO..1163352Z. doi: 10.1371/journal.pone.0163352 . ISSN   1932-6203. PMC   5051820 . PMID   27706188.