Papaya ringspot virus

Last updated
Papaya ringspot virus
Papaya Ringspot Virus Symptoms.jpg
Symptoms of PRSV on Papaya tree (a) and fruit (b)
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Pisuviricota
Class: Stelpaviricetes
Order: Patatavirales
Family: Potyviridae
Genus: Potyvirus
Species:
Papaya ringspot virus
Synonyms
  • Papaya ringspot potyvirus
  • Papaya distortion mosaic virus
  • Papaya leaf distortion virus
  • Papaw distortion ringspot virus
  • Papaw mosaic virus
  • Watermelon mosaic virus 1

Papaya ringspot virus (PRSV) is a pathogenic plant virus [1] in the genus Potyvirus and the virus family Potyviridae which primarily infects the papaya tree.

Contents

The virus is a non-enveloped, flexuous rod-shaped particle that is between 760800 nm long and 12 nm in diameter. It is transmitted between plants by mechanical activities like pruning and by numerous aphid species such as Myzus persicae. No seed transmission has been detected. [2]

There are two major types of this virus, but both are serologically indistinguishable and are so closely genetically related that they are now considered the same virus species. The type that gave the virus its name are the Type P isolates (PRSV-P). This type infects papaya and several members of the melon family (Cucurbitaceae). The other type, Type W isolates (PRSV-W), does not infect papaya. Isolates of PRSV-W do infect cucurbits such as watermelon, cucumber, and squash and were originally known as Watermelon mosaic virus 1. [3] [4]

History

Hawaiian papaya production has been severely affected twice by PRSV. The virus was introduced to Oahu as early as 1937. [5] The disease was mild for a number of years until it either mutated or a more aggressive strain was introduced around 1950. Within 12 years, the amount of land under papaya production dropped 94%. Production was then moved from Oahu to the Puna region of Hawaii island (the "Big Island") under strict quarantine. In 1971 PRSV was found in home gardens but efforts were taken to prevent its spread. The virus emerged in commercial farms in 1992 and by 1995 production in Puna was impossible. Commercial growers again relocated to the Hamakua coast but with only limited success. Hawaiian papaya production was halved by the end of the decade. Transgenic papaya varieties that are resistant to PRSV entered production in 1998 and resuscitated the industry. [6]

Distribution and origin

Both pathotypes are distributed worldwide. PRSV-P, for example, is known to be present in the Middle East, Africa, South and Central American. It has also been found in China, France, Germany, India, Italy, Mexico, Taiwan, and the United States. PRSV-W isolates have been found in the United States, the Caribbean, Mexico, Italy, Germany, Australia, France, India, the Middle East, and South America.

Using genetic phylogeny studies, researchers suspect the virus originated in Asia, likely India, about 2,250 years ago. From there it slowly spread through the continent reaching China about 600 years ago. It was also introduced directly from India to Australia and the Americas within the last 300 years. Papayas were introduced to India only 500 years ago, at which point the virus made the jump from cucurbits. However, the virus has switched back and forth between pathotypes many times in its evolution. [7]

PRSV-P

Symptoms are typical of viral diseases. Papaya exhibits yellowing, leaf distortion, and severe mosaic. Oily or water-soaked spots and streaks appear on the trunk and petioles. The fruit will exhibit bumps and the classic "ringspot". A severe isolate of PRSV has also been shown to cause tissue necrosis. [8] Cucurbit symptoms tend to be similar to papaya symptoms including blisters, mosaic, yellowing, and leaf distortions. [9]

This virus produces two types of inclusion bodies visible under a light microscope with proper staining of epidermal strips. [10] One inclusion is the typical cylindrical inclusion (CI) which is considered diagnostic for the potyvirus group, and the other is called the amorphous inclusion (AI). The presence of both inclusions can be diagnostic for this virus. [11]

PRSV-W

Symptoms of PRSV in pumpkins (Cucurbita pepo) 5332001-PPT.jpg
Symptoms of PRSV in pumpkins ( Cucurbita pepo )

In squash, watermelon and other cucurbits, PRSV-W causes mottling and distortion of leaves and fruit. [12] PRSV-W is considered to be one of the limiting factors in the growing of cucurbits in Florida. [13]

PRSV-W should not be confused with Watermelon mosaic virus 2, another potyvirus that infects cucurbits around the world, including Florida, and which is now known simply as Watermelon mosaic virus (WMV). PRSV has a different host range, different serological properties, and no nucleotide sequence homology with WMV. [14] WMV also has different cytoplasmic inclusion bodies that can differentiate it from PRSV-W. [15]

Polyclonal and monoclonal antibodies have been made for both of the CI and AI proteins as well as for the capsid protein of PRSV-W. [16]

Vectors

Aphids are the predominant means by which PRSV is transmitted. PRSV is a non-persistent virus, meaning it does not enter beyond the feeding mouthparts of the aphid, and does not circulate or multiply within its insect host. Non-persistent viruses are transmitted quickly and easily between plants. Many species of aphid can transmit PRSV, particularly the Peach Aphid and Melon Aphid. [17] [18]

Seed transmission has been observed at rates of 2 infected second generation plants out of 1355. [19] This method of transmission is marginal compared to transmission through aphid vectors. [20] However, if infected seed survives, it could then function as a source on inoculum, which then could be spread by insect vectors.

Disease transmission can also occur by planting infected seedlings in fields where the virus is not present. Using "clean", virus-free seedlings for planting is of very high importance.

Control

There is a known resistance to PRSV, although certain varieties are more symptomatic than others. [21] There are four main methods of control for PRSV: quarantine and geographic displacement, roguing and netting, cross-protection, and genetic modification of the host plant. Because PRSV is a non-persistent virus and is consequently transmitted to healthy plants by aphids within a very short time period, insecticidal control is difficult and impractical. Once symptoms have been observed, it is already too late to spray for aphids – the disease has most likely already been transmitted to nearby healthy plants. In order to implement successful vector control, frequent preventative sprays are required, which is rarely done.

Prevention through quarantine and geographic displacement of cropland is common and has occurred in Hawaii, the Philippines and Brazil. [20] [21] When fields become infected, such as the case of Oahu papaya growers, attempts to relocate growing areas to virus-free fields are made. This is usually just a temporary avoidance of the disease, which eventually spreads to the new fields.

Roguing, or the removal and destruction of infected plants, is a way to control the spread of PRSV. This method was employed unsuccessfully when PRSV began to invade the Puna region of Hawaii. It is difficult to suppress the spread of PRSV through roguing because it is spread very quickly and effectively by aphids.

Netting can also be used to prevent insect vectors from spreading the virus. Production under netting is prohibitively expensive for subsistence and small-scale producers, [21] but was used effectively in Taiwan because geographical displacement was not possible on such a small island. [22]

Cross protection

Cross protection is similar in practice, although not in mode of action, to viral vaccinations in humans. A mild strain of PRSV is introduced into the host plant, which then develops resistance to virulent strains of the virus. Development of cross-protection in papaya was researched in Hawaii starting in 1979. A delay in the onset of symptoms was achieved, as well as a reduction in the severity of symptoms. However, inoculation of the mild strain also caused pathogenesis on the papaya plants. [20]

Cross-protection is done in Taiwan, Thailand, and Hawaii using strains HA 5-1 and HA 6-1. [23]

Transgenics

There are two transgenic varieties of papaya, Rainbow and SunUp, both of which were created by Dennis Gonsalves [24] and his team and were introduced for production on May 1, 1998. [25] Rainbow (created by Dennis Gonsalves [24] ) is an F1 hybrid, which is a cross between the yellow-fleshed Kapoho and the red-fleshed SunUp. [26] Rainbow is produced on 76% of Hawaiian papaya acreage, while SunUp is hardly grown commercially. SunUp is thought to be more resistant to exotic strains of PRSV, while Rainbow has shown susceptibility to such exotic strains of the virus. [21] Transgenic varieties have been shown to be extremely effective against Hawaiian strains of PRSV, showing complete resistance to the virus compared to 100% infection of susceptible strains in some trials. [27] [28]

Pathogen-derived resistance (PDR) is the technique of inserting a gene fragment from the pathogen into the transgenic crop, which then affords the crop plant resistance against the pathogen. This method was employed in the development of transgenic papaya. PRSV's coat protein gene was inserted into highly embryogenic plant tissue by using the newly invented gene gun, which led to the development of the transgenic line 55–1, which was proven to be effective at controlling Hawaiian strains of PRSV. PDR possibly works by RNA interference. [29]

Deregulation

The evaluation of whether or not to release transgenic papaya in the United States was undertaken by APHIS, the EPA and the FDA. This incident was unique in that transgenic crops are usually developed and promoted by commercial operations, while transgenic papaya and the case for deregulation was adopted by University of Hawaii researchers. The university was highly motivated to help save the Hawaiian papaya industry, and consequently took a leading role in pushing for commercialization of the fruit. [20]

Japan is 20% of Hawaii's export market. Japan had been resistant to approve GMO papaya since its introduction in 1998. As of 2011, the Rainbow transgenic papaya has been approved for export to Japan. [26]

Durability of resistance

So far in Hawaii, there has been no breakdown of the coat protein resistance encoded in transgenic strains of papaya. Exposure to foreign strains of the virus is a serious risk, as Rainbow papayas have been shown to be susceptible to PRSV from Guam, Taiwan and Thailand. [21] [30]

One new transgenic line appears resistant to PRSV from multiple localities. [29]

Hybridization

There is a long line of attempts to transfer PRSV-resistance from Vasconcellea spp. into papaya. Fertile resistant hybrid plants have been produced but are not known to be commercialized. [23]

Economic impact

In Hawaii, PRSV has had dramatic effects. Between 1992 and 1997, nearly all fields in the Puna region had been affected. [20] This is a local industry worth $11 million annually. [31]

Papaya is grown for personal consumption by small subsistence farmers in parts of Southeast Asia, with small surpluses sold at market. PRSV is the biggest constraint to papaya production in the Philippines. In 1994, PRSV damage had destroyed 60 million pesos worth of papaya production in the Southern Tagalog area, and had reduced production levels by 80%. [21]

Brazil accounts for nearly half of global output, with India second and Nigeria third in worldwide production. [32] Dramatic geographical shifts of production to avoid PRSV have been common. For example, between 1973 and 1984, papaya production moved substantially in Brazil away from Rio de Janeiro and São Paulo to the northern states of Espirito Santo and Bahia. [20] As with the case of Hawaii, PRSV generally catches up to the industry's movements over time. The total economic costs of such redistributive costs are unknown, but likely significant.

Backlash against GMO papaya has resulted in surreptitious destruction of papaya plantations under the cover of darkness. In some cases, farmers have lost up to $15,000 worth of papaya trees. [31]

See also

Related Research Articles

<span class="mw-page-title-main">Papaya</span> Species of tropical fruit plant

The papaya, papaw, or pawpaw is the plant species Carica papaya, one of the 21 accepted species in the genus Carica of the family Caricaceae. It was first domesticated in Mesoamerica, within modern-day southern Mexico and Central America. It is grown in several countries in regions with a tropical climate. In 2020, India produced 42% of the world's supply of papayas.

<span class="mw-page-title-main">Plum pox</span> Viral plant disease

Plum pox, also known as sharka, is the most devastating viral disease of stone fruit from the genus Prunus. The disease is caused by the plum pox virus (PPV), and the different strains may infect a variety of stone fruit species including peaches, apricots, plums, nectarine, almonds, and sweet and tart cherries. Wild and ornamental species of Prunus may also become infected by some strains of the virus.

Zucchini yellow mosaic virus (ZYMV) is an aphid-borne potyvirus, regarded as a major pathogen of cucurbits in most regions of the world where these crops are cultivated.

<i>Lettuce mosaic virus</i> Species of virus

Lettuce mosaic virus (LMV) is a typical potyvirus, which causes one of the major virus diseases of lettuce crops worldwide.

<i>Potyvirus</i> Genus of positive-strand RNA viruses in the family Potyviridae

Potyvirus is a genus of positive-strand RNA viruses in the family Potyviridae. Plants serve as natural hosts. Like begomoviruses, members of this genus may cause significant losses in agricultural, pastoral, horticultural, and ornamental crops. More than 200 species of aphids spread potyviruses, and most are from the subfamily Aphidinae. The genus contains 190 species and potyviruses account for about thirty percent of all currently known plant viruses.

Bean yellow mosaic virus is a plant pathogenic virus in the genus Potyvirus and the virus family Potyviridae. Like other members of the Potyvirus genus, it is a monopartite strand of positive-sense, single-stranded RNA surrounded by a capsid made for a single viral encoded protein. The virus is a filamentous particle that measures about 750 nm in length. This virus is transmitted by species of aphids and by mechanical inoculation.

<i>Bidens mottle virus</i> Species of virus

Bidens mottle virus (BiMoV) is a pathogenic plant virus in the plant virus family Potyviridae. BiMoV is a flexuous filamentous particle, 720 nm long, and belongs to the Potyviridae genus Potyvirus. Like other viruses in this genus, Bidens mottle virus is transmitted both mechanically by sap and by aphids in a stylet-borne fashion.

<i>Cucumber mosaic virus</i> Species of virus

Cucumber mosaic virus (CMV) is a plant pathogenic virus in the family Bromoviridae. This virus has a worldwide distribution and a very wide host range, having the reputation of the widest host range of any known plant virus. It can be transmitted from plant to plant both mechanically by sap and by aphids in a stylet-borne fashion. It can also be transmitted in seeds and by the parasitic weeds, Cuscuta sp. (dodder).

<i>Odontoglossum ringspot virus</i> Species of virus

Odontoglossum ringspot virus (ORSV) is a plant pathogenic virus that belongs to the family Virgaviridae. It is one of the most common viruses affecting cultivated orchids, perhaps second only to the Cymbidium mosaic virus. It causes spots on leaves and colored streaks on flowers. If a plant is also infected with the Cymbidium mosaic virus, it can lead to a condition called blossom brown necrotic streak.

Papaya mosaic virus (PapMV) is a plant pathogenic virus in the genus Potexvirus and the family Alphaflexiviridae. PapMV is a filamentous, flexuous rod, 530 nm in length.

<i>Prunus necrotic ringspot virus</i> Species of virus

Prunus necrotic ringspot virus (PNRSV) is a plant pathogenic virus causing ring spot diseases affecting species of the genus Prunus, as well as other species such as rose and hops. PNRSV is found worldwide due to easy transmission through plant propagation methods and infected seed. The virus is in the family Bromoviridae and genus Ilarvirus. Synonyms of PNRSV include European plum line pattern virus, hop B virus, hop C virus, plum line pattern virus, sour cherry necrotic ringspot virus, and peach ringspot virus.

<i>Tobacco ringspot virus</i> Species of virus

Tobacco ringspot virus (TRSV) is a plant pathogenic virus in the plant virus family Secoviridae. It is the type species of the genus Nepovirus. Nepoviruses are transmitted between plants by nematodes, thrips, mites, grasshoppers, and flea beetles. TRSV is also easily transmitted by sap inoculation and transmission in seeds has been reported. In recent cases it has also been shown to appear in bees, but no transmission to plants from bees has been noted.

Alternanthera mosaic virus (AltMV) is a plant pathogenic virus. AltMV belongs to the virus genus Potexvirus and the virus family Alphaflexiviridae.

Commelina mosaic virus (CoMV) is a plant pathogenic virus in the genus Potyvirus and the virus family Potyviridae. Like other members of the Potyvirus genus, CoMV is a monopartite strand of positive-sense, single-stranded RNA surrounded by a capsid made for a single viral encoded protein. The virus is a filamentous particle that measures about 707-808 nm in length. This virus is transmitted by two species of aphids, Myzus persicae and Aphis gossypii, and by mechanical inoculation.

<i>Watermelon mosaic virus</i> Species of virus

Watermelon mosaic virus (WMV) also known as Marrow mosaic virus, Melon mosaic virus, and until recently Watermelon mosaic virus type 2 (WMV-2), is a plant pathogenic virus that causes viral infection in many different plants. The virus itself is referred to as Watermelon Mosaic Virus II or WMV-2 and is an isolate of the U.S. WMV-2 is a ssRNA positive strand virus that is part of the Potyviridae or Potyvirus clade. Like all RNA viruses, it contains a protein capsid which protects the inner viral RNA. First described on squash in Florida, WMV arose from a unique recombination of genetic material contributed by Soybean mosaic virus (SMV) and Bean common mosaic virus (BCMV) along with Peanut Stripe virus (PSV).

<i>Papaya lethal yellowing virus</i> Species of virus

Papaya Lethal Yellowing Virus (PLYV) is an isometric viral plant pathogen, tentatively assigned to the genus Sobemovirus, that causes lethal yellowing disease of the papaya plant.

<i>Squash mosaic virus</i> Species of virus

Squash mosaic virus (SqMV) is a mosaic virus disease common in squash plants and other plants, including melons, of the family Cucurbitaceae. It occurs worldwide. It is transmitted primarily by beetles, including the leaf beetle, spotted cucumber beetle, and 28-spotted ladybird beetle, as well as some other beetles. Plants are infected by the saliva expelled by the beetles as they feed upon the plant. The beetles acquire the virus by feeding upon an infected plant and can retain the virus in their bodies for up to 20 days. Unlike some other mosaic viruses that infect squashes, SqMV is not spread by aphids. In melons it can be spread by seeds. The results are dark green mosaic, blistering, vein clearing, yellowing of leaves, and hardening. Symptoms include "pronounced chlorotic mottle, green veinbanding, and distortion of leaves". Fruits of infected plants are also affected, becoming mottled and misshaped. There are two strains of this virus: strain 1 has a greater effect on melons than squash while the opposite is true of strain 2.

<i>Aphis nerii</i> Species of true bug

Aphis nerii is an aphid of the family Aphididae. Its common names include oleander aphid, milkweed aphid, sweet pepper aphid, and nerium aphid.

Dennis Gonsalves is an American phytopathologist. He has created with his team two virus-resistant papaya cultivars called SunUp and Rainbow, which rescued the papaya sector in Hawaii from the devastating effects of the papaya ringspot virus that hit in the late 1990s.

The cardamom mosaic virus (CdMV) is a mosaic virus that affects the production of green cardamom (E. cardamomum). It is a member of the genus Macluravirus (recognized under the family Potyviridae by ICTV in 1988), and is transmitted through aphids (P.caladii) and infected rhizomes, the former in a non-persistent manner.

References

  1. "About Plant Viruses". Archived from the original on 2014-10-10. Retrieved 2014-10-09.
  2. "Description of Plant Viruses: Papaya ringspot virus".
  3. Webb; Scott (1965). "Isolation and identification of watermelon on mosaic viruses 1 and 2". Phytopathology. 55: 895–900.
  4. Purcifull, D.E.; Hiebert, E. (1979). "Serological Distinction of Watermelon Mosaic Virus Isolates" (PDF). Phytopathology. American Phytopathological Society. 69 (2): 112–116. doi:10.1094/phyto-69-112.
  5. Parris, G.K. (1938) A new disease of papaya in Hawaii. Proc. Am. Soc. Hortic. Sci. 36, 263–265.
  6. Tripathi, S.; Suzuki, J. N. Y.; Ferreira, S. A.; Gonsalves, D. (2008). "Papaya ringspot virus-P: Characteristics, pathogenicity, sequence variability and control". Molecular Plant Pathology. 9 (3): 269–280. doi:10.1111/j.1364-3703.2008.00467.x. PMC   6640413 . PMID   18705869.
  7. Olarte Castillo, X. A.; Fermin, G.; Tabima, J.; Rojas, Y.; Tennant, P. F.; Fuchs, M.; Sierra, R.; Bernal, A. J.; Restrepo, S. (2011). "Phylogeography and molecular epidemiology of Papaya ringspot virus". Virus Research. 159 (2): 132–140. doi:10.1016/j.virusres.2011.04.011. PMID   21549774.
  8. Gonsalves, D.; Tripathi, S.; Carr, J.B.; Suzuki, J.Y. (2010). "Papaya Ringspot virus". The Plant Health Instructor. American Phytopathological Society. doi:10.1094/PHI-I-2010-1004-01. Archived from the original on 2013-01-18. Retrieved 2012-12-02.
  9. Dahal, G.; Lecoq, H.; Albrechtsen, S. E. (1997). "Occurrence of papaya ringspot potyvirus and cucurbit viruses in Nepal". Annals of Applied Biology. 130 (3): 491. doi:10.1111/j.1744-7348.1997.tb07677.x.
  10. "The Plant Viruses of Florida and their Inclusions". Archived from the original on 2014-10-09. Retrieved 2014-10-09.
  11. "Inclusions of PRSV".
  12. "Papaya Ringspot virus in Squash".
  13. Webb, S.; Hiebert, E.; Kucharek, T.A. (2003). "Identity and distribution of viruses infecting cucurbits in Florida". Phytopathology. American Phytopathological Society. 93 (S1): 89. doi:10.1094/PHYTO.2003.93.6.S1. PMID   18944040.
  14. "Description of Plant Viruses: Watermelon mosaic virus 2".
  15. "Cylindrical Inclusions of Watermelon Mosaic virus".
  16. Baker, C.A.; Lecoq, H.; Purcifull, D.E. (1991). "Serological and Biological Variability Among Papaya Ringspot Virus Type-W Isolated in Florida" (PDF). Phytopathology. 81 (7): 722–728. doi:10.1094/phyto-81-722.
  17. Heu R.A.; Nagata N.M.; Fukada M.T.; Yonahara B.Y. (May 2002). Papaya Ringspot Virus Established on Maui (PDF) (Report). Hawaii Department of Agriculture.
  18. Kalleshwaraswamy CM, Kumar NK. (2008). "Transmission efficiency of Papaya ringspot virus by three aphid species". Phytopathology. 98 (5): 541–6. doi:10.1094/PHYTO-98-5-0541. PMID   18943221.
  19. Bayot, R. G., Villegas, V. N., Magdalita, P. M., Jovellana, M. D., Espino, T. M., & Exconde, S. B. (1990). Seed transmissibility of papaya ringspot virus. Philippine Journal of Crop Science, 15(2), 107–111.
  20. 1 2 3 4 5 6 Gonsalves, D. (1998). "CONTROL OF PAPAYA RINGSPOT VIRUS IN PAPAYA: A Case Study". Annual Review of Phytopathology. 36: 415–437. doi:10.1146/annurev.phyto.36.1.415. PMID   15012507. S2CID   28864226.
  21. 1 2 3 4 5 6 Papaya Ringspot Virus-Resistant (PRVR) Papaya "Why genetically engineer virus resistance into papaya?" Fact Sheet (PDF) (Report). USAID, ABSP & Cornell University. September 10, 2004.
  22. Fuller G.B. (2005). Use and Regulation of Genetically Modified Organisms (PDF) (Report). Asian Productivity Organization. pp. 31–21. Archived from the original (PDF) on 2011-11-24.
  23. 1 2 Ordaz-Pérez, Daniela; Gámez-Vázquez, Josué; Hernández-Ruiz, Jesús; Espinosa-Trujillo, Edgar; Rivas-Valencia, Patricia; Castro-Montes, Ivonne (2 September 2017). "Resistencia de Vasconcellea cauliflora al Virus de la mancha anular de la papaya-potyvirus (PRSV-P) y su introgresión en Carica papaya". Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology. 35 (3). doi: 10.18781/r.mex.fit.1703-4 .
  24. 1 2 "The man behind the Rainbow - Biology Fortified, Inc". Biology Fortified, Inc. 2012-06-21. Retrieved 2017-08-07.
  25. sss253 (2015-11-02). "Dennis Gonsalves: Public Sector Hero". Cornell Alliance for Science. Retrieved 2017-08-07.
  26. 1 2 "Hawaii Grown Papayas".
  27. Ferreira, S. A.; Pitz, K. Y.; Manshardt, R.; Zee, F.; Fitch, M.; Gonsalves, D. (2002). "Virus Coat Protein Transgenic Papaya Provides Practical Control of Papaya ringspot virusin Hawaii". Plant Disease. 86 (2): 101–105. doi:10.1094/PDIS.2002.86.2.101. PMID   30823304.
  28. Tripathi S, Suzuki J, Gonsalves D. (2007). "Development of Genetically Engineered Resistant Papaya for papaya ringspot virus in a Timely Manner: A Comprehensive and Successful Approach". Development of genetically engineered resistant papaya for papaya ringspot virus in a timely manner: a comprehensive and successful approach. Methods in Molecular Biology. Vol. 354. pp. 197–240. doi:10.1385/1-59259-966-4:197. ISBN   978-1-59259-966-0. PMID   17172756.{{cite book}}: CS1 maint: multiple names: authors list (link)
  29. 1 2 Mishra, Ritesh; Gaur, Rajarshi Kumar; Patil, Basavaprabhu L. (2016). "Current Knowledge of Viruses Infecting Papaya and Their Transgenic Management". Plant Viruses: Evolution and Management. pp. 189–203. doi:10.1007/978-981-10-1406-2_11. ISBN   978-981-10-1405-5.
  30. Tennant, P. F. (1994). "Differential Protection Against Papaya Ringspot Virus Isolates in Coat Protein Gene Transgenic Papaya and Classically Cross-Protected Papaya". Phytopathology. 84 (11): 1359–1366. doi:10.1094/Phyto-84-1359.
  31. 1 2 Kelleher J.S. (August 21, 2011). "Hawaii's geneticially modified papayas attacked". The Maui News. Archived from the original on March 6, 2012.
  32. Sarris, Alexander (2003). Medium-term prospects for agricultural commodities: projections to the year 2010 (Vol. 1). Rome: Food and Agricultural Organization (FAO). p. 118. ISBN   92-5-105077-5.