Transgene

Last updated

A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the phenotype of an organism. Transgene describes a segment of DNA containing a gene sequence that has been isolated from one organism and is introduced into a different organism. This non-native segment of DNA may either retain the ability to produce RNA or protein in the transgenic organism or alter the normal function of the transgenic organism's genetic code. In general, the DNA is incorporated into the organism's germ line. For example, in higher vertebrates this can be accomplished by injecting the foreign DNA into the nucleus of a fertilized ovum. This technique is routinely used to introduce human disease genes or other genes of interest into strains of laboratory mice to study the function or pathology involved with that particular gene.

Contents

The construction of a transgene requires the assembly of a few main parts. The transgene must contain a promoter, which is a regulatory sequence that will determine where and when the transgene is active, an exon, a protein coding sequence (usually derived from the cDNA for the protein of interest), and a stop sequence. These are typically combined in a bacterial plasmid and the coding sequences are typically chosen from transgenes with previously known functions. [1]

Transgenic or genetically modified organisms, be they bacteria, viruses or fungi, serve many research purposes. Transgenic plants, insects, fish and mammals (including humans) have been bred. Transgenic plants such as corn and soybean have replaced wild strains in agriculture in some countries (e.g. the United States). Transgene escape has been documented for GMO crops since 2001 with persistence and invasiveness. Transgenetic organisms pose ethical questions and may cause biosafety problems.

History

The idea of shaping an organism to fit a specific need is not a new science. However, until the late 1900s farmers and scientists could breed new strains of a plant or organism only from closely related species because the DNA had to be compatible for offspring to be able to reproduce.[ citation needed ]

In the 1970 and 1980s, scientists passed this hurdle by inventing procedures for combining the DNA of two vastly different species with genetic engineering. The organisms produced by these procedures were termed transgenic. Transgenesis is the same as gene therapy in the sense that they both transform cells for a specific purpose. However, they are completely different in their purposes, as gene therapy aims to cure a defect in cells, and transgenesis seeks to produce a genetically modified organism by incorporating the specific transgene into every cell and changing the genome. Transgenesis will therefore change the germ cells, not only the somatic cells, in order to ensure that the transgenes are passed down to the offspring when the organisms reproduce. Transgenes alter the genome by blocking the function of a host gene; they can either replace the host gene with one that codes for a different protein, or introduce an additional gene. [2]

The first transgenic organism was created in 1974 when Annie Chang and Stanley Cohen expressed Staphylococcus aureus genes in Escherichia coli . [3] In 1978, yeast cells were the first eukaryotic organisms to undergo gene transfer. [4] Mouse cells were first transformed in 1979, followed by mouse embryos in 1980. Most of the very first transmutations were performed by microinjection of DNA directly into cells. Scientists were able to develop other methods to perform the transformations, such as incorporating transgenes into retroviruses and then infecting cells; using electroinfusion, which takes advantage of an electric current to pass foreign DNA through the cell wall; biolistics, which is the procedure of shooting DNA bullets into cells; and also delivering DNA into the newly fertilized egg. [5]

The first transgenic animals were only intended for genetic research to study the specific function of a gene, and by 2003, thousands of genes had been studied.

Use in plants

A variety of transgenic plants have been designed for agriculture to produce genetically modified crops, such as corn, soybean, rapeseed oil, cotton, rice and more. As of 2012, these GMO crops were planted on 170 million hectares globally. [6]

Golden rice

One example of a transgenic plant species is golden rice. In 1997,[ citation needed ] five million children developed xerophthalmia, a medical condition caused by vitamin A deficiency, in Southeast Asia alone. [7] Of those children, a quarter million went blind. [7] To combat this, scientists used biolistics to insert the daffodil phytoene synthase gene into Asia indigenous rice cultivars. [8] The daffodil insertion increased the production of β-carotene. [8] The product was a transgenic rice species rich in vitamin A, called golden rice. Little is known about the impact of golden rice on xerophthalmia because anti-GMO campaigns have prevented the full commercial release of golden rice into agricultural systems in need. [9]

Transgene escape

The escape of genetically-engineered plant genes via hybridization with wild relatives was first discussed and examined in Mexico [10] and Europe in the mid-1990s. There is agreement that escape of transgenes is inevitable, even "some proof that it is happening". [6] Up until 2008 there were few documented cases. [6] [11]

Corn

Corn sampled in 2000 from the Sierra Juarez, Oaxaca, Mexico contained a transgenic 35S promoter, while a large sample taken by a different method from the same region in 2003 and 2004 did not. A sample from another region from 2002 also did not, but directed samples taken in 2004 did, suggesting transgene persistence or re-introduction. [12] A 2009 study found recombinant proteins in 3.1% and 1.8% of samples, most commonly in southeast Mexico. Seed and grain import from the United States could explain the frequency and distribution of transgenes in west-central Mexico, but not in the southeast. Also, 5.0% of corn seed lots in Mexican corn stocks expressed recombinant proteins despite the moratorium on GM crops. [13]

Cotton

In 2011, transgenic cotton was found in Mexico among wild cotton, after 15 years of GMO cotton cultivation. [14]

Rapeseed (canola)

Transgenic rapeseed Brassicus napus – hybridized with a native Japanese species, Brassica rapa – was found in Japan in 2011 [15] after having been identified in 2006 in Québec, Canada. [16] They were persistent over a six-year study period, without herbicide selection pressure and despite hybridization with the wild form. This was the first report of the introgression—the stable incorporation of genes from one gene pool into another—of an herbicide-resistance transgene from Brassica napus into the wild form gene pool. [17]

Creeping bentgrass

Transgenic creeping bentgrass, engineered to be glyphosate-tolerant as "one of the first wind-pollinated, perennial, and highly outcrossing transgenic crops", was planted in 2003 as part of a large (about 160 ha) field trial in central Oregon near Madras, Oregon. In 2004, its pollen was found to have reached wild growing bentgrass populations up to 14 kilometres away. Cross-pollinating Agrostis gigantea was even found at a distance of 21 kilometres. [18] The grower, Scotts Company could not remove all genetically engineered plants, and in 2007, the U.S. Department of Agriculture fined Scotts $500,000 for noncompliance with regulations. [19]

Risk assessment

The long-term monitoring and controlling of a particular transgene has been shown not to be feasible. [20] The European Food Safety Authority published a guidance for risk assessment in 2010. [21]

Use in mice

Genetically modified mice are the most common animal model for transgenic research. [22] Transgenic mice are currently being used to study a variety of diseases including cancer, obesity, heart disease, arthritis, anxiety, and Parkinson's disease. [23] The two most common types of genetically modified mice are knockout mice and oncomice. Knockout mice are a type of mouse model that uses transgenic insertion to disrupt an existing gene's expression. In order to create knockout mice, a transgene with the desired sequence is inserted into an isolated mouse blastocyst using electroporation. Then, homologous recombination occurs naturally within some cells, replacing the gene of interest with the designed transgene. Through this process, researchers were able to demonstrate that a transgene can be integrated into the genome of an animal, serve a specific function within the cell, and be passed down to future generations. [24]

Oncomice are another genetically modified mouse species created by inserting transgenes that increase the animal's vulnerability to cancer. Cancer researchers utilize oncomice to study the profiles of different cancers in order to apply this knowledge to human studies. [24]

Use in Drosophila

Multiple studies have been conducted concerning transgenesis in Drosophila melanogaster , the fruit fly. This organism has been a helpful genetic model for over 100 years, due to its well-understood developmental pattern. The transfer of transgenes into the Drosophila genome has been performed using various techniques, including P element, Cre-loxP, and ΦC31 insertion. The most practiced method used thus far to insert transgenes into the Drosophila genome utilizes P elements. The transposable P elements, also known as transposons, are segments of bacterial DNA that are translocated into the genome, without the presence of a complementary sequence in the host's genome. P elements are administered in pairs of two, which flank the DNA insertion region of interest. Additionally, P elements often consist of two plasmid components, one known as the P element transposase and the other, the P transposon backbone. The transposase plasmid portion drives the transposition of the P transposon backbone, containing the transgene of interest and often a marker, between the two terminal sites of the transposon. Success of this insertion results in the nonreversible addition of the transgene of interest into the genome. While this method has been proven effective, the insertion sites of the P elements are often uncontrollable, resulting in an unfavorable, random insertion of the transgene into the Drosophila genome. [25]

To improve the location and precision of the transgenic process, an enzyme known as Cre has been introduced. Cre has proven to be a key element in a process known as recombinase-mediated cassette exchange (RMCE). While it has shown to have a lower efficiency of transgenic transformation than the P element transposases, Cre greatly lessens the labor-intensive abundance[ clarification needed ] of balancing random P insertions. Cre aids in the targeted transgenesis of the DNA gene segment of interest, as it supports the mapping of the transgene insertion sites, known as loxP sites. These sites, unlike P elements, can be specifically inserted to flank a chromosomal segment of interest, aiding in targeted transgenesis. The Cre transposase is important in the catalytic cleavage of the base pairs present at the carefully positioned loxP sites, permitting more specific insertions of the transgenic donor plasmid of interest. [26]

To overcome the limitations and low yields that transposon-mediated and Cre-loxP transformation methods produce, the bacteriophage ΦC31 has recently been utilized. Recent breakthrough studies involve the microinjection of the bacteriophage ΦC31 integrase, which shows improved transgene insertion of large DNA fragments that are unable to be transposed by P elements alone. This method involves the recombination between an attachment (attP) site in the phage and an attachment site in the bacterial host genome (attB). Compared to usual P element transgene insertion methods, ΦC31 integrates the entire transgene vector, including bacterial sequences and antibiotic resistance genes. Unfortunately, the presence of these additional insertions has been found to affect the level and reproducibility of transgene expression.

Use in livestock and aquaculture

One agricultural application is to selectively breed animals for particular traits: Transgenic cattle with an increased muscle phenotype has been produced by overexpressing a short hairpin RNA with homology to the myostatin mRNA using RNA interference. [27] Transgenes are being used to produce milk with high levels of proteins or silk from the milk of goats. Another agricultural application is to selectively breed animals, which are resistant to diseases or animals for biopharmaceutical production. [27]

Future potential

The application of transgenes is a rapidly growing area of molecular biology. As of 2005 it was predicted that in the next two decades, 300,000 lines of transgenic mice will be generated. [28] Researchers have identified many applications for transgenes, particularly in the medical field. Scientists are focusing on the use of transgenes to study the function of the human genome in order to better understand disease, adapting animal organs for transplantation into humans, and the production of pharmaceutical products such as insulin, growth hormone, and blood anti-clotting factors from the milk of transgenic cows.[ citation needed ]

As of 2004 there were five thousand known genetic diseases, and the potential to treat these diseases using transgenic animals is, perhaps, one of the most promising applications of transgenes. There is a potential to use human gene therapy to replace a mutated gene with an unmutated copy of a transgene in order to treat the genetic disorder. This can be done through the use of Cre-Lox or knockout. Moreover, genetic disorders are being studied through the use of transgenic mice, pigs, rabbits, and rats. Transgenic rabbits have been created to study inherited cardiac arrhythmias, as the rabbit heart markedly better resembles the human heart as compared to the mouse. [29] [30] More recently, scientists have also begun using transgenic goats to study genetic disorders related to fertility. [31]

Transgenes may be used for xenotransplantation from pig organs. Through the study of xeno-organ rejection, it was found that an acute rejection of the transplanted organ occurs upon the organ's contact with blood from the recipient due to the recognition of foreign antibodies on endothelial cells of the transplanted organ. Scientists have identified the antigen in pigs that causes this reaction, and therefore are able to transplant the organ without immediate rejection by removal of the antigen. However, the antigen begins to be expressed later on, and rejection occurs. Therefore, further research is being conducted.[ citation needed ] Transgenic microorganisms capable of producing catalytic proteins or enzymes which increase the rate of industrial reactions.

Ethical controversy

Transgene use in humans is currently fraught with issues. Transformation of genes into human cells has not been perfected yet. The most famous example of this involved certain patients developing T-cell leukemia after being treated for X-linked severe combined immunodeficiency (X-SCID). [32] This was attributed to the close proximity of the inserted gene to the LMO2 promoter, which controls the transcription of the LMO2 proto-oncogene. [33]

See also

Related Research Articles

<span class="mw-page-title-main">Genetically modified organism</span> Organisms whose genetic material has been altered using genetic engineering methods

A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), from animals to plants and microorganisms. Genes have been transferred within the same species, across species, and even across kingdoms. New genes can be introduced, or endogenous genes can be enhanced, altered, or knocked out.

<span class="mw-page-title-main">Transposable element</span> Semiparasitic DNA sequence

A transposable element is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Transposition often results in duplication of the same genetic material. In the human genome, L1 and Alu elements are two examples. Barbara McClintock's discovery of them earned her a Nobel Prize in 1983. Its importance in personalized medicine is becoming increasingly relevant, as well as gaining more attention in data analytics given the difficulty of analysis in very high dimensional spaces.

Gene knockouts are a widely used genetic engineering technique that involves the targeted removal or inactivation of a specific gene within an organism's genome. This can be done through a variety of methods, including homologous recombination, CRISPR-Cas9, and TALENs.

Cre-Lox recombination is a site-specific recombinase technology, used to carry out deletions, insertions, translocations and inversions at specific sites in the DNA of cells. It allows the DNA modification to be targeted to a specific cell type or be triggered by a specific external stimulus. It is implemented both in eukaryotic and prokaryotic systems. The Cre-lox recombination system has been particularly useful to help neuroscientists to study the brain in which complex cell types and neural circuits come together to generate cognition and behaviors. NIH Blueprint for Neuroscience Research has created several hundreds of Cre driver mouse lines which are currently used by the worldwide neuroscience community.

<span class="mw-page-title-main">Exogenous DNA</span> DNA originating from outside an organism

Exogenous DNA is DNA originating outside the organism of concern or study. Exogenous DNA can be found naturally in the form of partially degraded fragments left over from dead cells. These DNA fragments may then become integrated into the chromosomes of nearby bacterial cells to undergo mutagenesis. This process of altering bacteria is known as transformation. Bacteria may also undergo artificial transformation through chemical and biological processes. The introduction of exogenous DNA into eukaryotic cells is known as transfection. Exogenous DNA can also be artificially inserted into the genome, which revolutionized the process of genetic modification in animals. By microinjecting an artificial transgene into the nucleus of an animal embryo, the exogenous DNA is allowed to merge the cell's existing DNA to create a genetically modified, transgenic animal. The creation of transgenic animals also leads into the study of altering sperm cells with exogenous DNA.

In molecular biology, insertional mutagenesis is the creation of mutations in DNA by the addition of one or more base pairs. Such insertional mutations can occur naturally, mediated by viruses or transposons, or can be artificially created for research purposes in the lab.

<span class="mw-page-title-main">Gene targeting</span> Genetic technique that uses homologous recombination to change an endogenous gene

Gene targeting is a biotechnological tool used to change the DNA sequence of an organism. It is based on the natural DNA-repair mechanism of Homology Directed Repair (HDR), including Homologous Recombination. Gene targeting can be used to make a range of sizes of DNA edits, from larger DNA edits such as inserting entire new genes into an organism, through to much smaller changes to the existing DNA such as a single base-pair change. Gene targeting relies on the presence of a repair template to introduce the user-defined edits to the DNA. The user will design the repair template to contain the desired edit, flanked by DNA sequence corresponding (homologous) to the region of DNA that the user wants to edit; hence the edit is targeted to a particular genomic region. In this way Gene Targeting is distinct from natural homology-directed repair, during which the ‘natural’ DNA repair template of the sister chromatid is used to repair broken DNA. The alteration of DNA sequence in an organism can be useful in both a research context – for example to understand the biological role of a gene – and in biotechnology, for example to alter the traits of an organism.

<span class="mw-page-title-main">Brainbow</span> Neuroimaging technique to differentiate neurons

Brainbow is a process by which individual neurons in the brain can be distinguished from neighboring neurons using fluorescent proteins. By randomly expressing different ratios of red, green, and blue derivatives of green fluorescent protein in individual neurons, it is possible to flag each neuron with a distinctive color. This process has been a major contribution to the field of neural connectomics.

In molecular cloning and biology, a gene knock-in refers to a genetic engineering method that involves the one-for-one substitution of DNA sequence information in a genetic locus or the insertion of sequence information not found within the locus. Typically, this is done in mice since the technology for this process is more refined and there is a high degree of shared sequence complexity between mice and humans. The difference between knock-in technology and traditional transgenic techniques is that a knock-in involves a gene inserted into a specific locus, and is thus a "targeted" insertion. It is the opposite of gene knockout.

Transposon mutagenesis, or transposition mutagenesis, is a biological process that allows genes to be transferred to a host organism's chromosome, interrupting or modifying the function of an extant gene on the chromosome and causing mutation. Transposon mutagenesis is much more effective than chemical mutagenesis, with a higher mutation frequency and a lower chance of killing the organism. Other advantages include being able to induce single hit mutations, being able to incorporate selectable markers in strain construction, and being able to recover genes after mutagenesis. Disadvantages include the low frequency of transposition in living systems, and the inaccuracy of most transposition systems.

<span class="mw-page-title-main">Genetically modified mouse</span>

A genetically modified mouse or genetically engineered mouse model (GEMM) is a mouse that has had its genome altered through the use of genetic engineering techniques. Genetically modified mice are commonly used for research or as animal models of human diseases and are also used for research on genes. Together with patient-derived xenografts (PDXs), GEMMs are the most common in vivo models in cancer research. Both approaches are considered complementary and may be used to recapitulate different aspects of disease. GEMMs are also of great interest for drug development, as they facilitate target validation and the study of response, resistance, toxicity and pharmacodynamics.

<span class="mw-page-title-main">Knockout rat</span> Type of genetically engineered rat

A knockout rat is a genetically engineered rat with a single gene turned off through a targeted mutation used for academic and pharmaceutical research. Knockout rats can mimic human diseases and are important tools for studying gene function and for drug discovery and development. The production of knockout rats was not economically or technically feasible until 2008.

<span class="mw-page-title-main">Genetically modified animal</span> Animal that has been genetically modified

Genetically modified animals are animals that have been genetically modified for a variety of purposes including producing drugs, enhancing yields, increasing resistance to disease, etc. The vast majority of genetically modified animals are at the research stage while the number close to entering the market remains small.

Transposons are semi-parasitic DNA sequences which can replicate and spread through the host's genome. They can be harnessed as a genetic tool for analysis of gene and protein function. The use of transposons is well-developed in Drosophila and in Thale cress and bacteria such as Escherichia coli.

<span class="mw-page-title-main">Floxing</span> Sandwiching of a DNA sequence between two lox P sites

In genetics, floxing refers to the sandwiching of a DNA sequence between two lox P sites. The terms are constructed upon the phrase "flanking/flanked by LoxP". Recombination between LoxP sites is catalysed by Cre recombinase. Floxing a gene allows it to be deleted, translocated or inverted in a process called Cre-Lox recombination. The floxing of genes is essential in the development of scientific model systems as it allows researchers to have spatial and temporal alteration of gene expression. Moreover, animals such as mice can be used as models to study human disease. Therefore, Cre-lox system can be used in mice to manipulate gene expression in order to study human diseases and drug development. For example, using the Cre-lox system, researchers can study oncogenes and tumor suppressor genes and their role in development and progression of cancer in mice models.

The Sleeping Beauty transposon system is a synthetic DNA transposon designed to introduce precisely defined DNA sequences into the chromosomes of vertebrate animals for the purposes of introducing new traits and to discover new genes and their functions. It is a Tc1/mariner-type system, with the transposase resurrected from multiple inactive fish sequences.

<span class="mw-page-title-main">Genome editing</span> Type of genetic engineering

Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts genetic material into a host genome, genome editing targets the insertions to site-specific locations. The basic mechanism involved in genetic manipulations through programmable nucleases is the recognition of target genomic loci and binding of effector DNA-binding domain (DBD), double-strand breaks (DSBs) in target DNA by the restriction endonucleases, and the repair of DSBs through homology-directed recombination (HDR) or non-homologous end joining (NHEJ).

<span class="mw-page-title-main">History of genetic engineering</span>

Genetic engineering is the science of manipulating genetic material of an organism. The first artificial genetic modification accomplished using biotechnology was transgenesis, the process of transferring genes from one organism to another, first accomplished by Herbert Boyer and Stanley Cohen in 1973. It was the result of a series of advancements in techniques that allowed the direct modification of the genome. Important advances included the discovery of restriction enzymes and DNA ligases, the ability to design plasmids and technologies like polymerase chain reaction and sequencing. Transformation of the DNA into a host organism was accomplished with the invention of biolistics, Agrobacterium-mediated recombination and microinjection. The first genetically modified animal was a mouse created in 1974 by Rudolf Jaenisch. In 1976 the technology was commercialised, with the advent of genetically modified bacteria that produced somatostatin, followed by insulin in 1978. In 1983 an antibiotic resistant gene was inserted into tobacco, leading to the first genetically engineered plant. Advances followed that allowed scientists to manipulate and add genes to a variety of different organisms and induce a range of different effects. Plants were first commercialized with virus resistant tobacco released in China in 1992. The first genetically modified food was the Flavr Savr tomato marketed in 1994. By 2010, 29 countries had planted commercialized biotech crops. In 2000 a paper published in Science introduced golden rice, the first food developed with increased nutrient value.

<span class="mw-page-title-main">Genetic engineering techniques</span> Methods used to change the DNA of organisms

Genetic engineering techniques allow the modification of animal and plant genomes. Techniques have been devised to insert, delete, and modify DNA at multiple levels, ranging from a specific base pair in a specific gene to entire genes. There are a number of steps that are followed before a genetically modified organism (GMO) is created. Genetic engineers must first choose what gene they wish to insert, modify, or delete. The gene must then be isolated and incorporated, along with other genetic elements, into a suitable vector. This vector is then used to insert the gene into the host genome, creating a transgenic or edited organism.

Breast cancer metastatic mouse models are experimental approaches in which mice are genetically manipulated to develop a mammary tumor leading to distant focal lesions of mammary epithelium created by metastasis. Mammary cancers in mice can be caused by genetic mutations that have been identified in human cancer. This means models can be generated based upon molecular lesions consistent with the human disease.

References

  1. "Transgene Design". Mouse Genetics Core. Washington University. Archived from the original on March 2, 2011.
  2. Gordon, J.; Ruddle, F. (1981-12-11). "Integration and stable germ line transmission of genes injected into mouse pronuclei". Science. 214 (4526): 1244–1246. Bibcode:1981Sci...214.1244G. doi:10.1126/science.6272397. ISSN   0036-8075. PMID   6272397.
  3. Chang, A. C. Y.; Cohen, S. N. (1974). "Genome construction between bacterial species in vitro: replication and expression of Staphylococcus plasmid genes in Escherichia coli". Proc. Natl. Acad. Sci. USA. 71 (4): 1030–1034. Bibcode:1974PNAS...71.1030C. doi: 10.1073/pnas.71.4.1030 . PMC   388155 . PMID   4598290.
  4. Hinnen, A; Hicks, JB; Fink, GR (1978). "Transformation of yeast". Proc. Natl. Acad. Sci. USA. 75 (4): 1929–1933. Bibcode:1978PNAS...75.1929H. doi: 10.1073/pnas.75.4.1929 . PMC   392455 . PMID   347451.
  5. Bryan D. Ness, ed. (February 2004). "Transgenic Organisms" . Encyclopedia of Genetics (Rev. ed.). Pacific Union College. ISBN   1-58765-149-1.
  6. 1 2 3 Gilbert, N. (2013). "Case studies: A hard look at GM crops". Nature. 497 (7447): 24–26. Bibcode:2013Natur.497...24G. doi: 10.1038/497024a . PMID   23636378.
  7. 1 2 Sommer, Alfred (1988). "New imperatives for an old vitamin (A)" (PDF). Journal of Nutrition. 119 (1): 96–100. doi:10.1093/jn/119.1.96. PMID   2643699.
  8. 1 2 Burkhardt, P.K. (1997). "Transgenic Rice (Oryza Sativa) Endosperm Expressing Daffodil (Narcissus Pseudonarcissus) Phytoene Synthase Accumulates Phytoene, a Key Intermediate of Provitamin A Biosynthesis". Plant Journal. 11 (5): 1071–1078. doi: 10.1046/j.1365-313x.1997.11051071.x . PMID   9193076.
  9. Harmon, Amy (2013-08-24). "Golden Rice: Lifesaver?". The New York Times. ISSN   0362-4331 . Retrieved 2015-11-24.
  10. Arias, D. M.; Rieseberg, L. H. (November 1994). "Gene flow between cultivated and wild sunflowers". Theoretical and Applied Genetics. 89 (6): 655–60. doi:10.1007/BF00223700. PMID   24178006. S2CID   27999792.
  11. Kristin L. Mercer; Joel D. Wainwright (January 2008). "Gene flow from transgenic maize to landraces in Mexico: An analysis". Agriculture, Ecosystems & Environment. 123 (1–3): 109–115. doi:10.1016/j.agee.2007.05.007.(subscription required)
  12. Piñeyro-Nelson A, Van Heerwaarden J, Perales HR, Serratos-Hernández JA, Rangel A, Hufford MB, Gepts P, Garay-Arroyo A, Rivera-Bustamante R, Alvarez-Buylla ER (February 2009). "Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations". Molecular Ecology. 18 (4): 750–61. doi:10.1111/j.1365-294X.2008.03993.x. PMC   3001031 . PMID   19143938.
  13. Dyer GA, Serratos-Hernandez JA, Perales HR, Gepts P, Pineyro-Nelson A, et al. (2009). Hany A. El-Shemy (ed.). "Dispersal of Transgenes through Maize Seed Systems in Mexico". PLOS ONE. 4 (5): e5734. Bibcode:2009PLoSO...4.5734D. doi: 10.1371/journal.pone.0005734 . PMC   2685455 . PMID   19503610.
  14. Wegier, A.; Piñeyro-Nelson, A.; Alarcón, J.; Gálvez-Mariscal, A.; Álvarez-Buylla, E. R.; Piñero, D. (2011). "Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin". Molecular Ecology. 20 (19): 4182–4194. doi:10.1111/j.1365-294X.2011.05258.x. PMID   21899621. S2CID   20530592.
  15. Aono, M.; Wakiyama, S.; Nagatsu, M.; Kaneko, Y.; Nishizawa, T.; Nakajima, N.; Tamaoki, M.; Kubo, A.; Saji, H. (2011). "Seeds of a possible natural hybrid between herbicide-resistant Brassica napus and Brassica rapa detected on a riverbank in Japan". GM Crops. 2 (3): 201–10. doi:10.4161/gmcr.2.3.18931. PMID   22179196. S2CID   207515910.
  16. Simard, M.-J.; Légère, A.; Warwick, S.I. (2006). "Transgenic Brassica napus fields and Brassica rapa weeds in Québec: sympatry and weedcrop in situ hybridization". Canadian Journal of Botany. 84 (12): 1842–1851. doi:10.1139/b06-135.
  17. Warwick, S.I.; Legere, A.; Simard, M.J.; James, T. (2008). "Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population". Molecular Ecology. 17 (5): 1387–1395. doi: 10.1111/j.1365-294X.2007.03567.x . PMID   17971090. S2CID   15784621.
  18. Watrud, L.S.; Lee, E.H.; Fairbrother, A.; Burdick, C.; Reichman, J.R.; Bollman, M.; Storm, M.; King, G.J.; Van de Water, P.K. (2004). "Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker". Proceedings of the National Academy of Sciences. 101 (40): 14533–14538. doi: 10.1073/pnas.0405154101 . PMC   521937 . PMID   15448206.
  19. USDA (26 November 2007). "USDA concludes genetically engineered creeping bentgrass investigation—USDA Assesses The Scotts Company, LLC $500,000 Civil Penalty". Archived from the original on 8 December 2015.
  20. van Heerwaarden J, Ortega Del Vecchyo D, Alvarez-Buylla ER, Bellon MR (2012). "New genes in traditional seed systems: diffusion, detectability and persistence of transgenes in a maize metapopulation". PLOS ONE. 7 (10): e46123. Bibcode:2012PLoSO...746123V. doi: 10.1371/journal.pone.0046123 . PMC   3463572 . PMID   23056246.
  21. EFSA (2010). "Guidance on the environmental risk assessment of genetically modified plants". EFSA Journal. 8 (11): 1879. doi: 10.2903/j.efsa.2010.1879 .
  22. "Background: Cloned and Genetically Modified Animals". Center for Genetics and Society. April 14, 2005.
  23. "Knockout Mice". National Human Genome Research Institute. August 27, 2015.
  24. 1 2 Genetically modified mouse#cite note-8
  25. Venken, K. J. T.; Bellen, H. J. (2007). "Transgenesis upgrades for Drosophila melanogaster". Development. 134 (20): 3571–3584. doi: 10.1242/dev.005686 . PMID   17905790.
  26. Oberstein, A.; Pare, A.; Kaplan, L.; Small, S. (2005). "Site-specific transgenesis by Cre-mediated recombination in Drosophila". Nature Methods. 2 (8): 583–585. doi:10.1038/nmeth775. PMID   16094382. S2CID   24887960.
  27. 1 2 Long, Charles (2014-10-01). "Transgenic livestock for agriculture and biomedical applications". BMC Proceedings. 8 (Suppl 4): O29. doi:10.1186/1753-6561-8-S4-O29. ISSN   1753-6561. PMC   4204076 .{{cite journal}}: CS1 maint: unflagged free DOI (link)
  28. Houdebine, L.-M. (2005). "Use of Transgenic Animals to Improve Human Health and Animal Production". Reproduction in Domestic Animals. 40 (5): 269–281. doi:10.1111/j.1439-0531.2005.00596.x. PMC   7190005 . PMID   16008757.
  29. Brunner, Michael; Peng, Xuwen; Liu, GongXin (2008). "Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome". J Clin Invest. 118 (6): 2246–2259. doi:10.1172/JCI33578. PMC   2373420 . PMID   18464931.
  30. Odening, Katja E.; Bodi, Ilona; Franke, Gerlind; Rieke, Raphaela; Ryan de Medeiros, Anna; Perez-Feliz, Stefanie; Fürniss, Hannah; Mettke, Lea; Michaelides, Konstantin; Lang, Corinna N.; Steinfurt, Johannes (2019-03-07). "Transgenic short-QT syndrome 1 rabbits mimic the human disease phenotype with QT/action potential duration shortening in the atria and ventricles and increased ventricular tachycardia/ventricular fibrillation inducibility". European Heart Journal. 40 (10): 842–853. doi:10.1093/eurheartj/ehy761. ISSN   1522-9645. PMID   30496390.
  31. Kues WA, Niemann H (2004). "The contribution of farm animals to human health". Trends Biotechnol. 22 (6): 286–294. doi:10.1016/j.tibtech.2004.04.003. PMID   15158058.
  32. Woods, N.-B.; Bottero, V.; Schmidt, M.; von Kalle, C.; Verma, I. M. (2006). "Gene therapy: Therapeutic gene causing lymphoma". Nature. 440 (7088): 1123. Bibcode:2006Natur.440.1123W. doi: 10.1038/4401123a . PMID   16641981. S2CID   4372110.
  33. Hacein-Bey-Abina, S.; et al. (17 October 2003). "LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1". Science. 302 (5644): 415–419. Bibcode:2003Sci...302..415H. doi:10.1126/science.1088547. PMID   14564000. S2CID   9100335.

Further reading