Intensive crop farming

Last updated

Intensive crop farming is a modern industrialized form of crop farming. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations.

Contents

The practice of industrial agriculture is a relatively recent development in the history of agriculture, and the result of scientific discoveries and technological advances. Innovations in agriculture beginning in the late 19th century generally parallel developments in mass production in other industries that characterized the latter part of the Industrial Revolution. The identification of nitrogen and phosphorus as critical factors in plant growth led to the manufacture of synthetic fertilizers, making more intensive uses of farmland for crop production possible. [1]

Features

Certain crops have proven more amenable to intensive farming than others. [2]

Criticism

Critics of intensively farmed crops cite a wide range of concerns. On the food quality front, it is held by critics that quality is reduced when crops are bred and grown primarily for cosmetic and shipping characteristics. Environmentally, industrial farming of crops is claimed to be responsible for loss of biodiversity, degradation of soil quality, soil erosion, food toxicity (pesticide residues) and pollution (through agrichemical build-ups and runoff, and use of fossil fuels for agrichemical manufacture and for farm machinery and long-distance distribution).

History

The projects within the Green Revolution spread technologies that had already existed, but had not been widely used outside of industrialized nations. These technologies included pesticides, irrigation projects, and synthetic nitrogen fertilizer.

The novel technological development of the Green Revolution was the production of what some referred to as “miracle seeds.” [3] [ page needed ] Scientists created strains of maize, wheat, and rice that are generally referred to as HYVs or “high-yielding varieties.” HYVs have an increased nitrogen-absorbing potential compared to other varieties. Since cereals that absorbed extra nitrogen would typically lodge, or fall over before harvest, semi-dwarfing genes were bred into their genomes. Norin 10 wheat, a variety developed by Orville Vogel from Japanese dwarf wheat varieties, was instrumental in developing Green Revolution wheat cultivars. IR8, the first widely implemented HYV rice to be developed by IRRI, was created through a cross between an Indonesian variety named “Peta” and a Chinese variety named “Dee Geo Woo Gen.” [4]

With the availability of molecular genetics in Arabidopsis and rice the mutant genes responsible (reduced height(rht), gibberellin insensitive (gai1) and slender rice (slr1)) have been cloned and identified as cellular signalling components of gibberellic acid, a phytohormone involved in regulating stem growth via its effect on cell division. Stem growth in the mutant background is significantly reduced leading to the dwarf phenotype. Photosynthetic investment in the stem is reduced dramatically as the shorter plants are inherently more stable mechanically. Assimilates become redirected to grain production, amplifying in particular the effect of chemical fertilisers on commercial yield.

HYVs significantly outperform traditional varieties in the presence of adequate irrigation, pesticides, and fertilizers. In the absence of these inputs, traditional varieties may outperform HYVs. One criticism of HYVs is that they were developed as F1 hybrids, meaning they need to be purchased by a farmer every season rather than saved from previous seasons, thus increasing a farmer's cost of production.

Examples

Wheat (modern management techniques)

Wheat is a grass that is cultivated worldwide. Globally, it is the most important human food grain and ranks second in total production as a cereal crop behind maize; the third being rice. Wheat and barley were the first cereals known to have been domesticated. Cultivation and repeated harvesting and sowing of the grains of wild grasses led to the domestication of wheat through selection of mutant forms with tough years which remained intact during harvesting, and larger grains. Because of the loss of seed dispersal mechanisms, domesticated wheats have limited capacity to propagate in the wild. [5]

Agricultural cultivation using horse collar leveraged plows (3000 years ago) increased cereal grain productivity yields, as did the use of seed drills which replaced broadcasting sowing of seed in the 18th century. Yields of wheat continued to increase, as new land came under cultivation and with improved agricultural husbandry involving the use of fertilizers, threshing machines and reaping machines (the 'combine harvester'), tractor-draw cultivators and planters, and better varieties (see Green Revolution and Norin 10 wheat). With population growth rates falling, while yields continue to rise, the area devoted to wheat may now begin to decline for the first time in modern human history. [6]

While winter wheat lies dormant during a winter freeze, wheat normally requires between 110 and 130 days between planting and harvest, depending upon climate, seed type, and soil conditions. Crop management decisions require the knowledge of stage of development of the crop. In particular, spring fertilizers applications, herbicides, fungicides, growth regulators are typically applied at specific stages of plant development. For example, current recommendations often indicate the second application of nitrogen be done when the ear (not visible at this stage) is about 1 cm in size (Z31 on Zadoks scale).

Maize (mechanical harvesting)

Maize was planted by the Native Americans in hills, in a complex system known to some as the Three Sisters: beans used the corn plant for support, and squashes provided ground cover to stop weeds. This method was replaced by single species hill planting where each hill 60–120 cm (2–4 ft) apart was planted with 3 or 4 seeds, a method still used by home gardeners. A later technique was checked corn where hills were placed 40 inches (1,000 mm) apart in each direction, allowing cultivators to run through the field in two directions. In more arid lands this was altered and seeds were planted in the bottom of 10–12 cm (4–5 in) deep furrows to collect water. Modern technique plants maize in rows which allows for cultivation while the plant is young, although the hill technique is still used in the cornfields of some Native American reservations. Haudenosaunee Confederacy is what a group of Native Americans who are preparing for climate change through seed banking. Now this group is known as the Iroquois. [2] With a climate changing more crops are able to grow in different areas that they previously weren't able to grow in. This will open growing areas for maize.

A corn heap at the harvest site, India Cornheap.jpg
A corn heap at the harvest site, India

In North America, fields are often planted in a two-crop rotation with a nitrogen-fixing crop, often alfalfa in cooler climates and soybeans in regions with longer summers. Sometimes a third crop, winter wheat, is added to the rotation. Fields are usually plowed each year, although no-till farming is increasing in use. Many of the maize varieties grown in the United States and Canada are hybrids. Over half of the corn area planted in the United States has been genetically modified using biotechnology to express agronomic traits such as pest resistance or herbicide resistance.

Before about World War II, most maize in North America was harvested by hand (as it still is in most of the other countries where it is grown). This often involved large numbers of workers and associated social events. Some one- and two-row mechanical pickers were in use but the corn combine was not adopted until after the War. By hand or mechanical picker, the entire ear is harvested which then requires a separate operation of a corn sheller to remove the kernels from the ear. Whole ears of corn were often stored in corn cribs and these whole ears are a sufficient form for some livestock feeding use. Few modern farms store maize in this manner. Most harvest the grain from the field and store it in bins. The combine with a corn head (with points and snap rolls instead of a reel) does not cut the stalk; it simply pulls the stalk down. The stalk continues downward and is crumpled into a mangled pile on the ground. The ear of corn is too large to pass through a slit in a plate and the snap rolls pull the ear of corn from the stalk so that only the ear and husk enter the machinery. The combine separates the husk and the cob, keeping only the kernels.

Soybean (genetic modification)

Soybeans are one of the "biotech food" crops that are being genetically modified, and GMO soybeans are being used in an increasing number of products. Monsanto Company is the world's leader in genetically modified soy for the commercial market. In 1995, Monsanto introduced "Roundup Ready" (RR) soybeans that have had a copy of a gene from the bacterium, Agrobacterium sp. strain CP4, inserted, by means of a gene gun, into its genome that allows the transgenic plant to survive being sprayed by this non-selective herbicide, glyphosate. Glyphosate, the active ingredient in Roundup, kills conventional soybeans. The bacterial gene is EPSP (= 5-enolpyruvyl shikimic acid-3-phosphate) synthase. Soybean also has a version of this gene, but the soybean version is sensitive to glyphosate, while the CP4 version is not. [7]

RR soybeans allow a farmer to reduce tillage or even to sow the seed directly into an unplowed field, known as 'no-till' or conservation tillage. No-till agriculture has many advantages, greatly reducing soil erosion and creating better wildlife habitat; [8] it also saves fossil fuels, and sequesters CO2, a greenhouse effect gas. [9]

In 1997, about 8% of all soybeans cultivated for the commercial market in the United States were genetically modified. In 2006, the figure was 89%. As with other "Roundup Ready crops", concern is expressed over damage to biodiversity. [10] However, the RR gene has been bred into so many different soybean cultivars that the genetic modification itself has not resulted in any decline of genetic diversity. [11]

Tomato (hydroponics)

The largest commercial hydroponics facility in the world is Eurofresh Farms in Willcox, Arizona, which sold more than 200 million pounds of tomatoes in 2007. [12] Eurofresh has 318 acres (1.3 km2) under glass and represents about a third of the commercial hydroponic greenhouse area in the U.S. [13] Eurofresh does not consider their tomatoes organic, but they are pesticide-free. They are grown in rockwool with top irrigation.

Some commercial installations use no pesticides or herbicides, preferring integrated pest management techniques. There is often a price premium willingly paid by consumers for produce which is labeled "organic". Some states in the USA require soil as an essential to obtain organic certification. There are also overlapping and somewhat contradictory rules established by the US Federal Government. So some food grown with hydroponics can be certified organic. In fact, they are the cleanest plants possible because there is no environment variable and the dirt in the food supply is extremely limited. Hydroponics also saves an incredible amount of water; It uses as little as 1/20 the amount as a regular farm to produce the same amount of food. The water table can be impacted by the water use and run-off of chemicals from farms, but hydroponics may minimize impact as well as having the advantage that water use and water returns are easier to measure. This can save the farmer money by allowing reduced water use and the ability to measure consequences to the land around a farm.

The environment in a hydroponics greenhouse is tightly controlled for maximum efficiency and this new mindset is called soil-less/controlled-environment agriculture (S/CEA). With this growers can make ultra-premium foods anywhere in the world, regardless of temperature and growing seasons. Growers monitor the temperature, humidity, and pH level constantly.

See also

Related Research Articles

<span class="mw-page-title-main">Agriculture</span> Cultivation of plants and animals to provide useful products

Agriculture encompasses crop and livestock production, aquaculture, fisheries and forestry for food and non-food products. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities. While humans started gathering grains at least 105,000 years ago, nascent farmers only began planting them around 11,500 years ago. Sheep, goats, pigs and cattle were domesticated around 10,000 years ago. Plants were independently cultivated in at least 11 regions of the world. In the twentieth century, industrial agriculture based on large-scale monocultures came to dominate agricultural output.

<span class="mw-page-title-main">Green Revolution</span> Agricultural developments in 1950s–1960s

The Green Revolution, also known as the Third Agricultural Revolution, was a period of technology transfer initiatives that saw greatly increased crop yields and agricultural production. These changes in agriculture began in developed countries in the early 20th Century and spread globally till the late 1980s. In the late 1960s, farmers began incorporating new technologies such as high-yielding varieties of cereals, particularly dwarf wheat and rice, and the widespread use of chemical fertilizers, pesticides, and controlled irrigation.

<span class="mw-page-title-main">Intensive farming</span> Branch of agricultire

Intensive agriculture, also known as intensive farming, conventional, or industrial agriculture, is a type of agriculture, both of crop plants and of animals, with higher levels of input and output per unit of agricultural land area. It is characterized by a low fallow ratio, higher use of inputs such as capital, labour, agrochemicals and water, and higher crop yields per unit land area.

<span class="mw-page-title-main">Genetically modified food</span> Foods produced from organisms that have had changes introduced into their DNA

Genetically modified foods, also known as genetically engineered foods, or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using various methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.

In agriculture, monocropping is the practice of growing a single crop year after year on the same land. Maize, soybeans, and wheat are three common crops often monocropped. Monocropping is also referred to as continuous cropping, as in "continuous corn." Monocropping allows for farmers to have consistent crops throughout their entire farm. They can plant only the most profitable crop, use the same seed, pest control, machinery, and growing method on their entire farm, which may increase overall farm profitability.

<span class="mw-page-title-main">Genetically modified crops</span> Plants used in agriculture

Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

<span class="mw-page-title-main">History of agriculture</span>

Agriculture began independently in different parts of the globe, and included a diverse range of taxa. At least eleven separate regions of the Old and New World were involved as independent centers of origin. The development of agriculture about 12,000 years ago changed the way humans lived. They switched from nomadic hunter-gatherer lifestyles to permanent settlements and farming.

<span class="mw-page-title-main">Pioneer Hi Bred International</span> American producer of hybrid seeds for agriculture

Pioneer Hi-Bred International, Inc. is a U.S.-based producer of seeds for agriculture. They are a major producer of genetically modified crops with insect and herbicide resistance.

<span class="mw-page-title-main">Glufosinate</span> Broad-spectrum herbicide

Glufosinate is a naturally occurring broad-spectrum herbicide produced by several species of Streptomyces soil bacteria. Glufosinate is a non-selective, contact herbicide, with some systemic action. Plants may also metabolize bialaphos and phosalacine, other naturally occurring herbicides, directly into glufosinate. The compound irreversibly inhibits glutamine synthetase, an enzyme necessary for the production of glutamine and for ammonia detoxification, giving it antibacterial, antifungal and herbicidal properties. Application of glufosinate to plants leads to reduced glutamine and elevated ammonia levels in tissues, halting photosynthesis and resulting in plant death.

<span class="mw-page-title-main">Crop</span> Plant or animal product which can be grown and harvested

A crop is a plant that can be grown and harvested extensively for profit or subsistence. When the plants of the same kind are cultivated at one place on a large scale, it is called a crop. Most crops are cultivated in agriculture or hydroponics. Crops may include macroscopic fungus and marine macroalga, some of which are grown in aquaculture.

Since the advent of genetic engineering in the 1970s, concerns have been raised about the dangers of the technology. Laws, regulations, and treaties were created in the years following to contain genetically modified organisms and prevent their escape. Nevertheless, there are several examples of failure to keep GM crops separate from conventional ones.

<span class="mw-page-title-main">Genetically modified food controversies</span> Controversies over GMO food

Genetically modified food controversies are disputes over the use of foods and other goods derived from genetically modified crops instead of conventional crops, and other uses of genetic engineering in food production. The disputes involve consumers, farmers, biotechnology companies, governmental regulators, non-governmental organizations, and scientists. The key areas of controversy related to genetically modified food are whether such food should be labeled, the role of government regulators, the objectivity of scientific research and publication, the effect of genetically modified crops on health and the environment, the effect on pesticide resistance, the impact of such crops for farmers, and the role of the crops in feeding the world population. In addition, products derived from GMO organisms play a role in the production of ethanol fuels and pharmaceuticals.

<span class="mw-page-title-main">Industrial agriculture</span>

Industrial agriculture is a form of modern farming that refers to the industrialized production of crops and animals and animal products like eggs or milk. The methods of industrial agriculture include innovation in agricultural machinery and farming methods, genetic technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, the application of patent protection to genetic information, and global trade. These methods are widespread in developed nations and increasingly prevalent worldwide. Most of the meat, dairy, eggs, fruits and vegetables available in supermarkets are produced in this way.

<span class="mw-page-title-main">Green Revolution in India</span> Modernization of agriculture in India

The Green Revolution was a period that began in the 1960s during which agriculture in India was converted into a modern industrial system by the adoption of technology, such as the use of high yielding variety (HYV) seeds, mechanised farm tools, irrigation facilities, pesticides, and fertilizers. Mainly led by agricultural scientist M. S. Swaminathan in India, this period was part of the larger Green Revolution endeavor initiated by Norman Borlaug, which leveraged agricultural research and technology to increase agricultural productivity in the developing world.

Roundup Ready is the Monsanto trademark for its patented line of genetically modified crop seeds that are resistant to its glyphosate-based herbicide, Roundup.

<span class="mw-page-title-main">Maize</span> Genus of grass cultivated as a food crop

Maize, also known as corn in North American and Australian English, is a cereal grain first domesticated by indigenous peoples in southern Mexico about 10,000 years ago. The leafy stalk of the plant gives rise to inflorescences which produce pollen and separate ovuliferous inflorescences called ears that when fertilized yield kernels or seeds, which are botanical fruits. The term maize is preferred in formal, scientific, and international usage as the common name because it refers specifically to this one grain whereas corn refers to any principal cereal crop cultivated in a country. For example, in North America and Australia corn is often used for maize, but in England and Wales it can refer to wheat or barley, and in Scotland and Ireland to oats.

<span class="mw-page-title-main">Agricultural machinery</span> Machinery used in farming or other agriculture

Agricultural machinery relates to the mechanical structures and devices used in farming or other agriculture. There are many types of such equipment, from hand tools and power tools to tractors and the countless kinds of farm implements that they tow or operate. Diverse arrays of equipment are used in both organic and nonorganic farming. Especially since the advent of mechanised agriculture, agricultural machinery is an indispensable part of how the world is fed. Agricultural machinery can be regarded as part of wider agricultural automation technologies, which includes the more advanced digital equipment and robotics. While agricultural robots have the potential to automate the three key steps involved in any agricultural operation, conventional motorized machinery is used principally to automate only the performing step where diagnosis and decision-making are conducted by humans based on observations and experience.

<span class="mw-page-title-main">Crop desiccation</span>

Pre-harvest crop desiccation refers to the application of an agent to a crop just before harvest to kill the leaves and/or plants so that the crop dries out from environmental conditions, or "dry-down", more quickly and evenly. In agriculture, the term desiccant is applied to an agent that promotes dry down, thus the agents used are not chemical desiccants, rather they are herbicides and/or defoliants used to artificially accelerate the drying of plant tissues. Desiccation of crops through the use of herbicides is practiced worldwide on a variety of food and non-food crops.

High-yielding varieties (HYVs) of agricultural crops are usually characterized by a combination of the following traits in contrast to the conventional varieties:

This glossary of agriculture is a list of definitions of terms and concepts used in agriculture, its sub-disciplines, and related fields, including horticulture, animal husbandry, agribusiness, and agricultural policy. For other glossaries relevant to agricultural science, see Glossary of biology, Glossary of ecology, Glossary of environmental science, and Glossary of botanical terms.

References

  1. "Organic Farming :: Frequently Asked Questions".
  2. 1 2 Robertson, Ricky. "Crop Changes National Geographic". National Geographic . ”Madison”. Retrieved 3 March 2016.
  3. Brown, L R. 1970. Seeds of Change: The Green Revolution and Development in the 1970s, London: Pall Mall Press.
  4. Rice Varieties: IRRI Knowledge Bank. Accessed August 2006. "Rice Varieties". Archived from the original on 2006-07-13. Retrieved 2006-07-13.
  5. Smith, C. Wayne. (1995) Crop Production. John Wiley and Sons. pp. 60 62. ISBN   0-471-07972-3.
  6. Staff, The Economist, Dec 20th 2005 The story of wheat. Ears of plenty: The story of man's staple food
  7. Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451-1461
  8. "CTIC HOME". www.conservationinformation.org.
  9. Brookes G and Barfoot P (2005) GM crops: The global economic and environmental impact—the first nine years 1996–2004. AgBioForum 8:187 195
  10. Liu, KeShun (1997-05-01). Soybeans: Chemistry, Technology, and Utilization (Hardcover). Springer. pp.  532. ISBN   0-8342-1299-4.
  11. Sneller, CH (2003). "Impact of transgenic genotypes and subdivision on diversity within elite North American soybean germplasm". Crop Science. 43 (1): 409–414. doi:10.2135/cropsci2003.4090.
  12. Adelman, Jacob (November 21, 2008). "Urban growers go high-tech to feed city dwellers". Newsvine. Archived from the original on May 3, 2009. Retrieved April 7, 2009.
  13. Eurofresh Farms (2007). "Eurofresh Farms Adds 53-acre Greenhouse" (PDF). Archived from the original (PDF) on 2011-07-10.