An inclined plane, also known as a ramp, is a flat supporting surface tilted at an angle from the vertical direction, with one end higher than the other, used as an aid for raising or lowering a load. [1] [2] [3] The inclined plane is one of the six classical simple machines defined by Renaissance scientists. Inclined planes are used to move heavy loads over vertical obstacles. Examples vary from a ramp used to load goods into a truck, to a person walking up a pedestrian ramp, to an automobile or railroad train climbing a grade. [3]
Moving an object up an inclined plane requires less force than lifting it straight up, at a cost of an increase in the distance moved. [4] The mechanical advantage of an inclined plane, the factor by which the force is reduced, is equal to the ratio of the length of the sloped surface to the height it spans. Owing to conservation of energy, the same amount of mechanical energy (work) is required to lift a given object by a given vertical distance, disregarding losses from friction, but the inclined plane allows the same work to be done with a smaller force exerted over a greater distance. [5] [6]
The angle of friction, [7] also sometimes called the angle of repose, [8] is the maximum angle at which a load can rest motionless on an inclined plane due to friction without sliding down. This angle is equal to the arctangent of the coefficient of static friction μs between the surfaces. [8]
Two other simple machines are often considered to be derived from the inclined plane. [9] The wedge can be considered a moving inclined plane or two inclined planes connected at the base. [5] The screw consists of a narrow inclined plane wrapped around a cylinder. [5]
The term may also refer to a specific implementation; a straight ramp cut into a steep hillside for transporting goods up and down the hill. This may include cars on rails or pulled up by a cable system; a funicular or cable railway, such as the Johnstown Inclined Plane.
Inclined planes are widely used in the form of loading ramps to load and unload goods on trucks, ships and planes. [3] Wheelchair ramps are used to allow people in wheelchairs to get over vertical obstacles without exceeding their strength. Escalators and slanted conveyor belts are also forms of an inclined plane. [6] In a funicular or cable railway a railroad car is pulled up a steep inclined plane using cables. Inclined planes also allow heavy fragile objects, including humans, to be safely lowered down a vertical distance by using the normal force of the plane to reduce the gravitational force. Aircraft evacuation slides allow people to rapidly and safely reach the ground from the height of a passenger airliner.
Other inclined planes are built into permanent structures. Roads for vehicles and railroads have inclined planes in the form of gradual slopes, ramps, and causeways to allow vehicles to surmount vertical obstacles such as hills without losing traction on the road surface. [3] Similarly, pedestrian paths and sidewalks have gentle ramps to limit their slope, to ensure that pedestrians can keep traction. [1] [4] Inclined planes are also used as entertainment for people to slide down in a controlled way, in playground slides, water slides, ski slopes and skateboard parks.
Stevin's proof |
In 1586, Flemish engineer Simon Stevin (Stevinus) derived the mechanical advantage of the inclined plane by an argument that used a string of beads. [10] He imagined two inclined planes of equal height but different slopes, placed back-to-back as in a prism (A, B, C above). A loop of string with beads at equal intervals is draped over the inclined planes, with part of the string hanging down below. The beads resting on the planes act as loads on the planes, held up by the tension force in the string at point T. Stevin's argument goes like this: [10] [11] [12]
As pointed out by Dijksterhuis, [13] Stevin's argument is not completely tight. The forces exerted by the hanging part of the chain need not be symmetrical because the hanging part need not retain its shape when let go. Even if the chain is released with a zero angular momentum, motion including oscillations is possible unless the chain is initially in its equilibrium configuration, a supposition which would make the argument circular. |
Inclined planes have been used by people since prehistoric times to move heavy objects. [14] [15] The sloping roads and causeways built by ancient civilizations such as the Romans are examples of early inclined planes that have survived, and show that they understood the value of this device for moving things uphill. The heavy stones used in ancient stone structures such as Stonehenge [16] are believed to have been moved and set in place using inclined planes made of earth, [17] although it is hard to find evidence of such temporary building ramps. The Egyptian pyramids were constructed using inclined planes, [18] [19] [20] Siege ramps enabled ancient armies to surmount fortress walls. The ancient Greeks constructed a paved ramp 6 km (3.7 miles) long, the Diolkos, to drag ships overland across the Isthmus of Corinth. [4]
However the inclined plane was the last of the six classic simple machines to be recognised as a machine. This is probably because it is a passive and motionless device (the load is the moving part), [21] and also because it is found in nature in the form of slopes and hills. Although they understood its use in lifting heavy objects, the ancient Greek philosophers who defined the other five simple machines did not include the inclined plane as a machine. [22] This view persisted among a few later scientists; as late as 1826 Karl von Langsdorf wrote that an inclined plane "...is no more a machine than is the slope of a mountain". [21] The problem of calculating the force required to push a weight up an inclined plane (its mechanical advantage) was attempted by Greek philosophers Heron of Alexandria (c. 10 - 60 CE) and Pappus of Alexandria (c. 290 - 350 CE), but their solutions were incorrect. [23] [24] [25]
It was not until the Renaissance that the inclined plane was solved mathematically and classed with the other simple machines. The first correct analysis of the inclined plane appeared in the work of 13th century author Jordanus de Nemore, [26] [27] however his solution was apparently not communicated to other philosophers of the time. [24] Girolamo Cardano (1570) proposed the incorrect solution that the input force is proportional to the angle of the plane. [10] Then at the end of the 16th century, three correct solutions were published within ten years, by Michael Varro (1584), Simon Stevin (1586), and Galileo Galilei (1592). [24] Although it was not the first, the derivation of Flemish engineer Simon Stevin [25] is the most well-known, because of its originality and use of a string of beads (see box). [12] [26] In 1600, Italian scientist Galileo Galilei included the inclined plane in his analysis of simple machines in Le Meccaniche ("On Mechanics"), showing its underlying similarity to the other machines as a force amplifier. [28]
The first elementary rules of sliding friction on an inclined plane were discovered by Leonardo da Vinci (1452-1519), but remained unpublished in his notebooks. [29] They were rediscovered by Guillaume Amontons (1699) and were further developed by Charles-Augustin de Coulomb (1785). [29] Leonhard Euler (1750) showed that the tangent of the angle of repose on an inclined plane is equal to the coefficient of friction. [30]
The mechanical advantage of an inclined plane depends on its slope , meaning its gradient or steepness. The smaller the slope, the larger the mechanical advantage, and the smaller the force needed to raise a given weight. A plane's slope s is equal to the difference in height between its two ends, or "rise", divided by its horizontal length, or "run". [31] It can also be expressed by the angle the plane makes with the horizontal, .
The mechanical advantage of a simple machine as defined as the ratio of the output force exerted on the load to the input force applied.The inclined plane the output load force is just the gravitational force of the load object on the plane, its weight . The input force is the force exerted on the object, parallel to the plane, to move it up the plane. The mechanical advantage is
The of an ideal inclined plane without friction is sometimes called ideal mechanical advantage while the MA when friction is included is called the actual mechanical advantage. [32]
If there is no friction between the object being moved and the plane, the device is called an ideal inclined plane. This condition might be approached if the object is rolling like a barrel, or supported on wheels or casters. Due to conservation of energy, for a frictionless inclined plane the work done on the load lifting it, , is equal to the work done by the input force, [33] [34] [35]
Work is defined as the force multiplied by the displacement an object moves. The work done on the load is equal to its weight multiplied by the vertical displacement it rises, which is the "rise" of the inclined plane
The input work is equal to the force on the object times the diagonal length of the inclined plane.
Substituting these values into the conservation of energy equation above and rearranging
To express the mechanical advantage by the angle of the plane, [34] it can be seen from the diagram (above) that
So
So the mechanical advantage of a frictionless inclined plane is equal to the reciprocal of the sine of the slope angle. The input force from this equation is the force needed to hold the load motionless on the inclined plane, or push it up at a constant velocity. If the input force is greater than this, the load will accelerate up the plane. If the force is less, it will accelerate down the plane.
Where there is friction between the plane and the load, as for example with a heavy box being slid up a ramp, some of the work applied by the input force is dissipated as heat by friction, , so less work is done on the load. Due to conservation of energy, the sum of the output work and the frictional energy losses is equal to the input work
Therefore, more input force is required, and the mechanical advantage is lower, than if friction were not present. With friction, the load will only move if the net force parallel to the surface is greater than the frictional force opposing it. [8] [36] [37] The maximum friction force is given by
where is the normal force between the load and the plane, directed normal to the surface, and is the coefficient of static friction between the two surfaces, which varies with the material. When no input force is applied, if the inclination angle of the plane is less than some maximum value the component of gravitational force parallel to the plane will be too small to overcome friction, and the load will remain motionless. This angle is called the angle of repose and depends on the composition of the surfaces, but is independent of the load weight. It is shown below that the tangent of the angle of repose is equal to
With friction, there is always some range of input force for which the load is stationary, neither sliding up or down the plane, whereas with a frictionless inclined plane there is only one particular value of input force for which the load is stationary.
A load resting on an inclined plane, when considered as a free body has three forces acting on it: [8] [36] [37]
Using Newton's second law of motion the load will be stationary or in steady motion if the sum of the forces on it is zero. Since the direction of the frictional force is opposite for the case of uphill and downhill motion, these two cases must be considered separately:
Derivation of mechanical advantage for uphill motion The equilibrium equations for forces parallel and perpendicular to the plane are
|
Derivation of mechanical advantage for downhill motion The equilibrium equations are
|
The mechanical advantage of an inclined plane is the ratio of the weight of the load on the ramp to the force required to pull it up the ramp. If energy is not dissipated or stored in the movement of the load, then this mechanical advantage can be computed from the dimensions of the ramp.
In order to show this, let the position r of a rail car on along the ramp with an angle, θ, above the horizontal be given by
where R is the distance along the ramp. The velocity of the car up the ramp is now
Because there are no losses, the power used by force F to move the load up the ramp equals the power out, which is the vertical lift of the weight W of the load.
The input power pulling the car up the ramp is given by
and the power out is
Equate the power in to the power out to obtain the mechanical advantage as
The mechanical advantage of an inclined plane can also be calculated from the ratio of length of the ramp L to its height H, because the sine of the angle of the ramp is given by
therefore,
Example: If the height of a ramp is H = 1 meter and its length is L = 5 meters, then the mechanical advantage is
which means that a 20 lb force will lift a 100 lb load.
The Liverpool Minard inclined plane has the dimensions 1804 meters by 37.50 meters, which provides a mechanical advantage of
so a 100 lb tension force on the cable will lift a 4810 lb load. The grade of this incline is 2%, which means the angle θ is small enough that sin θ≈tan θ.
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.
In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x: where k is a positive constant.
A simple machine is a mechanical device that changes the direction or magnitude of a force. In general, they can be defined as the simplest mechanisms that use mechanical advantage to multiply force. Usually the term refers to the six classical simple machines that were defined by Renaissance scientists:
In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a given polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic regarding the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).
Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.
In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.
Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive.
Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength.
In physics and engineering, a phasor is a complex number representing a sinusoidal function whose amplitude, and initial phase are time-invariant and whose angular frequency is fixed. It is related to a more general concept called analytic representation, which decomposes a sinusoid into the product of a complex constant and a factor depending on time and frequency. The complex constant, which depends on amplitude and phase, is known as a phasor, or complex amplitude, and sinor or even complexor.
A banked turn is a turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn. For a road or railroad this is usually due to the roadbed having a transverse down-slope towards the inside of the curve. The bank angle is the angle at which the vehicle is inclined about its longitudinal axis with respect to the horizontal.
In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.
The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and braced excavations.
In geophysics and reflection seismology, the Zoeppritz equations are a set of equations that describe the partitioning of seismic wave energy at an interface, due to mode conversion. They are named after their author, the German geophysicist Karl Bernhard Zoeppritz, who died before they were published in 1919.
Rotational diffusion is the rotational movement which acts upon any object such as particles, molecules, atoms when present in a fluid, by random changes in their orientations. Although the directions and intensities of these changes are statistically random, they do not arise randomly and are instead the result of interactions between particles. One example occurs in colloids, where relatively large insoluble particles are suspended in a greater amount of fluid. The changes in orientation occur from collisions between the particle and the many molecules forming the fluid surrounding the particle, which each transfer kinetic energy to the particle, and as such can be considered random due to the varied speeds and amounts of fluid molecules incident on each individual particle at any given time.
Sliding is a type of motion between two surfaces in contact. This can be contrasted to rolling motion. Both types of motion may occur in bearings.
Contact mechanics is the study of the deformation of solids that touch each other at one or more points. This can be divided into compressive and adhesive forces in the direction perpendicular to the interface, and frictional forces in the tangential direction. Frictional contact mechanics is the study of the deformation of bodies in the presence of frictional effects, whereas frictionless contact mechanics assumes the absence of such effects.
In physics, and especially scattering theory, the momentum-transfer cross section is an effective scattering cross section useful for describing the average momentum transferred from a particle when it collides with a target. Essentially, it contains all the information about a scattering process necessary for calculating average momentum transfers but ignores other details about the scattering angle.
Bearing pressure is a particular case of contact mechanics often occurring in cases where a convex surface contacts a concave surface. Excessive contact pressure can lead to a typical bearing failure such as a plastic deformation similar to peening. This problem is also referred to as bearing resistance.
inclined plane definition dictionary.
angle of friction [mech.] in the study of bodies sliding on plane surfaces, the angle between the perpendicular to the surface and the resultant force (between the body and the surface) when the body begins to slide. angle of repose [s.m.] for any given granular material the steepest angle to the horizontal at which a heaped surface will stand in stated conditions.
Angle of repose is the limiting angle of inclination of a plane when a body, placed on the inclined plane, just starts sliding down the plane.