BoPET

Last updated
Metallized boPET film, 32 layers of ~14 mm thickness each Myla32rp.jpg
Metallized boPET film, 32 layers of ~14 μm thickness each

BoPET (biaxially oriented polyethylene terephthalate) is a polyester film made from stretched polyethylene terephthalate (PET) and is used for its high tensile strength, [1] chemical stability, [1] dimensional stability, [2] transparency [1] reflectivity, and electrical insulation. [1] . When metallized, it has [3] gas and moisture barrier properties, [3] The film is "biaxially oriented", which means that the polymer chains are oriented parallel to the plane of the film, and therefore oriented in two axes. [3] A variety of companies manufacture boPET and other polyester films under different brand names. In the UK and US, the best-known trade names are Mylar, Melinex, Lumirror and Hostaphan. [4] It was the first biaxially oriented polymer to be manufactured on a mass commercial scale. [5]

Contents

History

BoPET film was developed in the mid-1950s, [6] [7] originally by DuPont, [6] Imperial Chemical Industries (ICI), and Hoechst.

In 1953 Buckminster Fuller used Mylar as a skin for a geodesic dome, which he built with students at the University of Oregon. [8]

In 1955 Eastman Kodak used Mylar as a support for photographic film and called it "ESTAR Base". [9] The very thin and tough film allowed 6,000-foot (1,800 m) reels to be exposed on long-range U-2 reconnaissance flights. [10]

In 1964, NASA launched Echo II, a 40-metre (131 ft) diameter balloon constructed from a 9-micrometre (0.00035 in) thick mylar film sandwiched between two layers of 4.5-micrometre (0.00018 in) thick aluminium foil bonded together. [11]

Manufacture and properties

Chemical structure of polyethylene terephthalate Polyethylene terephthalate.svg
Chemical structure of polyethylene terephthalate

The manufacturing process begins with a film of molten polyethylene terephthalate (PET) being extruded onto a chill roll, which quenches it into the amorphous state. It is then biaxially oriented by drawing. The most common way of doing this is the sequential process, in which the film is first drawn in the machine direction using heated rollers and subsequently drawn in the transverse direction, i.e., orthogonally to the direction of travel, in a heated oven. It is also possible to draw the film in both directions simultaneously, although the equipment required for this is somewhat more elaborate. Draw ratios are typically around 3 to 4 in each direction.

Once the drawing is completed, the film is "heat set" and crystallized under tension in the oven at temperatures typically above 200 °C (392 °F). [12] The heat setting step prevents the film from shrinking back to its original unstretched shape and locks in the molecular orientation in the film plane.[ citation needed ] The orientation of the polymer chains is responsible for the high strength and stiffness of biaxially oriented PET film, which has a typical Young's modulus of about 4 GPa (0.58×10^6 psi). Another important consequence of the molecular orientation is that it induces the formation of many crystal nuclei. The crystallites that grow rapidly reach the boundary of the neighboring crystallite and remain smaller than the wavelength of visible light. As a result, biaxially oriented PET film has excellent clarity, despite its semicrystalline structure.

If it were produced without any additives, the surface of the film would be so smooth that layers would adhere strongly to one another when the film is wound up, similar to the sticking of clean glass plates when stacked. To make handling possible, microscopic inert inorganic particles, such as silicon dioxide, are usually embedded in the PET to roughen the surface of the film. [13]

Biaxially oriented PET film can be metallized by vapor deposition of a thin film of evaporated aluminium, gold, or other metal onto it. The result is much less permeable to gases (important in food packaging) and reflects up to 99% of light[ citation needed ], including much of the infrared spectrum. For some applications like food packaging, the aluminized boPET film can be laminated with a layer of polyethylene, which provides sealability and improves puncture resistance. The polyethylene side of such a laminate appears dull and the boPET side shiny.[ citation needed ] Other coatings, such as conductive indium tin oxide (ITO), can be applied to boPET film by sputter deposition.[ citation needed ]

Applications

Uses for boPET polyester films include, but are not limited to:

Flexible packaging and food contact

NASA's Technology Transfer Office at Stennis Space Center worked with a New Orleans seafood packaging company to develop a container to improve the shipping longevity of seafood, primarily frozen and fresh fish, while preserving the taste. A NASA engineer developed metalized heat resistant polybags with thermal foam liners using an enhanced version of the metalized mylar commonly known as "space blanket material," which was produced during the Apollo era. Seafood Packaging (96-132-17a).jpeg
NASA's Technology Transfer Office at Stennis Space Center worked with a New Orleans seafood packaging company to develop a container to improve the shipping longevity of seafood, primarily frozen and fresh fish, while preserving the taste. A NASA engineer developed metalized heat resistant polybags with thermal foam liners using an enhanced version of the metalized mylar commonly known as "space blanket material," which was produced during the Apollo era.

Covering over paper

Insulating material

Solar, marine, and aviation

Science

Electronic and acoustic

Printing media

Other

See also

Related Research Articles

<span class="mw-page-title-main">Polypropylene</span> Thermoplastic polymer

Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene.

<span class="mw-page-title-main">Flexible electronics</span> Mounting of electronic devices on flexible plastic substrates

Flexible electronics, also known as flex circuits, is a technology for assembling electronic circuits by mounting electronic devices on flexible plastic substrates, such as polyimide, PEEK or transparent conductive polyester film. Additionally, flex circuits can be screen printed silver circuits on polyester. Flexible electronic assemblies may be manufactured using identical components used for rigid printed circuit boards, allowing the board to conform to a desired shape, or to flex during its use.

<span class="mw-page-title-main">Polyethylene terephthalate</span> Polymer

Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in fibres for clothing, containers for liquids and foods, and thermoforming for manufacturing, and in combination with glass fibre for engineering resins.

<span class="mw-page-title-main">Lamination</span> Technique of fusing layers of material

Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials, such as plastic. A laminate is a layered object or material assembled using heat, pressure, welding, or adhesives. Various coating machines, machine presses and calendering equipment are used.

<span class="mw-page-title-main">Radiant barrier</span>

A radiant barrier is a type of building material that reflects thermal radiation and reduces heat transfer. Because thermal energy is also transferred by conduction and convection, in addition to radiation, radiant barriers are often supplemented with thermal insulation that slows down heat transfer by conduction or convection.

<span class="mw-page-title-main">PET bottle recycling</span> Recycling of bottles made of polyethylene terephthalate

Although PET is used in several applications, as of 2022 only bottles are collected at a substantial scale. The main motivations have been either cost reduction or recycle content of retail goods. An increasing amount is recycled back into bottles, the rest goes into fibres, film, thermoformed packaging and strapping. After sorting, cleaning and grinding, 'bottle flake' is obtained, which is then processed by either:

<span class="mw-page-title-main">Shrink wrap</span> Polymer used to bundle boxes on a pallet for transport

Shrink wrap, also shrink film, is a material made up of polymer plastic film. When heat is applied, it shrinks tightly over whatever it is covering. Heat can be applied with a handheld heat gun, or the product and film can pass through a heat tunnel on a conveyor.

<span class="mw-page-title-main">Drawing (manufacturing)</span> Use of tensile forces to elongate a workpiece

Drawing is a manufacturing process that uses tensile forces to elongate metal, glass, or plastic. As the material is drawn (pulled), it stretches and becomes thinner, achieving a desired shape and thickness. Drawing is classified into two types: sheet metal drawing and wire, bar, and tube drawing. Sheet metal drawing is defined as a plastic deformation over a curved axis. For wire, bar, and tube drawing, the starting stock is drawn through a die to reduce its diameter and increase its length. Drawing is usually performed at room temperature, thus classified as a cold working process; however, drawing may also be performed at higher temperatures to hot work large wires, rods, or hollow tubes in order to reduce forces.

<span class="mw-page-title-main">Low-density polyethylene</span> Chemical compound

Low-density polyethylene (LDPE) is a thermoplastic made from the monomer ethylene. It was the first grade of polyethylene, produced in 1933 by Dr John C. Swallow and M.W Perrin who were working for Imperial Chemical Industries (ICI) using a high pressure process via free radical polymerization. Its manufacture employs the same method today. The EPA estimates 5.7% of LDPE is recycled in the United States. Despite competition from more modern polymers, LDPE continues to be an important plastic grade. In 2013 the worldwide LDPE market reached a volume of about US$33 billion.

<span class="mw-page-title-main">Sailcloth</span> Strong fabric of the type used to make ships sails

Sailcloth is cloth used to make sails. It can be made of a variety of materials, including natural fibers such as flax, hemp, or cotton in various forms of sail canvas, and synthetic fibers such as nylon, polyester, aramids, and carbon fibers in various woven, spun, and molded textiles.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain one or two ester linkages in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

<span class="mw-page-title-main">Blister pack</span> Type of packaging

A blister pack is any of several types of pre-formed plastic packaging used for small consumer goods, foods, and for pharmaceuticals.

<span class="mw-page-title-main">Space blanket</span> Aluminized plastic sheet used to protect against heat in space

A space blanket is an especially low-weight, low-bulk blanket made of heat-reflective thin plastic sheeting. They are used on the exterior surfaces of spacecraft for thermal control, as well as by people. Their design reduces the heat loss in a person's body, which would otherwise occur quickly due to thermal radiation, water evaporation, or convection. Their low weight and compact size before unfurling make them ideal when space or weight are at a premium. They may be included in first aid kits and with camping equipment. Lost campers and hikers have an additional possible benefit: the shiny surface flashes in the sun, allowing its use as an improvised distress beacon for searchers and as a method of signalling over long distances to other people.

Coated paper is paper that has been coated by a mixture of materials or a polymer to impart certain qualities to the paper, including weight, surface gloss, smoothness, or reduced ink absorbency. Various materials, including kaolinite, calcium carbonate, bentonite, and talc, can be used to coat paper for high-quality printing used in the packaging industry and in magazines.

<span class="mw-page-title-main">Thermal Micrometeoroid Garment</span> Outer, protective layer of a spacesuit

An (Integrated) Thermal Micrometeoroid Garment is the outer layer of a space suit. The TMG has three functions: to insulate the suit occupant and prevent heat loss, to shield the occupant from harmful solar radiation, and to protect the astronaut from micrometeoroids and other orbital debris, which could puncture the suit and depressurize it.

Metallised films are polymer films coated with a thin layer of metal, usually aluminium. They offer the glossy metallic appearance of an aluminium foil at a reduced weight and cost. Metallised films are widely used for decorative purposes and food packaging, and also for specialty applications including insulation and electronics.

<span class="mw-page-title-main">Plastic film</span> Thin continuous polymeric material

Plastic film is a thin continuous polymeric material. Thicker plastic material is often called a "sheet". These thin plastic membranes are used to separate areas or volumes, to hold items, to act as barriers, or as printable surfaces.

<span class="mw-page-title-main">Retort pouch</span> Type of food packaging

A retort pouch or retortable pouch is a type of food packaging made from a laminate of flexible plastic and metal foils. It allows the sterile packaging of a wide variety of food and drink handled by aseptic processing and is used as an alternative to traditional industrial canning methods. Retort pouches are used in baby and toddler food, camping food, field rations, fish products, instant noodles, space food sports nutrition and brands such as Capri-Sun and Tasty Bite.

<span class="mw-page-title-main">Film blowing machine</span> Machine for making plastic film

A film blowing machine involves one process used to make plastic film. Extruded tubular processing is most often used with polyethylene films but can be used with other polymers. The film may be laminating film, shrink film, agricultural covering film, bags or film for textiles and clothing, and other packaging materials.

<span class="mw-page-title-main">Multilayered packaging</span>

Multi-layered packaging are multilayer or composite materials using innovative technologies aimed to give barrier properties, strength and storage stability to food items, new materials as well as hazardous materials.

References

  1. 1 2 3 4 5 Scott, Randall W. (1998). "A Practicing Comic-Book Librarian Surveys His Collection and Craft". Serials Review. 24 (1): 49–56. doi:10.1080/00987913.1998.10764429.
  2. 1 2 "How to Convert Mylar Aerospace Drawings to 3D CAD". CAD / CAM Services. 31 January 2018.
  3. 1 2 3 Drobny, Jiri George (2014-05-30). Handbook of Thermoplastic Elastomers. Elsevier. ISBN   978-0-323-22168-9.
  4. Mark T. DeMeuse (2011). Biaxial Stretching of Film: Principles And Applications. Elsevier. p. 48. ISBN   9780857092953.
  5. Jenkins, Wilmer A.; Osborn, Kenton R. (1992-09-25). Plastic Films: echnology and Packaging Applications. CRC Press. ISBN   978-0-87762-843-9.
  6. 1 2 Izard, Emmette Farr, "Production of polyethylene terephthalate", U.S. patent no. 2,534,028 (filed: 1948 May 13; issued: 1950 December 12).
  7. Adams, John Francis Edward; Gerber, Kenneth George; Holmes-Walker, William Anthony, "Process for the production of biaxially oriented polyethylene terephthalate film", U.S. patent no. 3,177,277 (filed: 1957 May 10 ; issued: 1965 April 6).
  8. Fuller Directs Installation Of Dymaxion-Type Dome (PDF), Oregon Daily Emerald, April 10, 1953
  9. "Kodak HCF Film/ESTAR Base" (PDF). www.kodak.com. Eastman Kodak Company. April 2015. Retrieved 2018-08-24.
  10. Eyes in the Sky, Dino A. Brugioni 2010, Naval Institute Press, ISBN   978 1 59114 082 5, pp. 102, 115.
  11. Staugaitis, C. & Kobren, L. (1966) "Mechanical And Physical Properties of the Echo II Metal-Polymer Laminate (NASA TN D-3409)", NASA Goddard Space Flight Center.
  12. DeMeuse, Mark T. (2011-07-18). Biaxial Stretching of Film: Principles and Applications. Elsevier. ISBN   978-0-85709-295-3.
  13. Thiel, Ulrich. "Polyester Additives" (PDF). Dr. Thiele Polyester Technology. Retrieved 4 January 2019.
  14. "Specifications for Polyester: Poly(ethylene-terephthalate)". Preservation. Library of Congress. Archived from the original on June 23, 2004.
  15. "What is Mylar Paper - More Than Just Decoration". Jampaper.com. 23 October 2013. Retrieved 2015-07-02.
  16. Kristen Heinichen (June 17, 2008). "Albany library's entire collection exposed to smoke". Athens Messenger. Archived from the original on 2015-07-03. Retrieved 2015-07-02 via Athens County Public Libraries.