Zytel

Last updated
Word-mark Zytel Wordmark.png
Word-mark

Zytel is a trademark owned by Celanese and used to make different high-strength, abrasion, and impact-resistant thermoplastic polyamide formulations, in the family of material more commonly known as nylon. The Zytel product line is based mostly on nylon 66, but also includes grades based on nylon 6 as a matrix, long chain nylons such as nylon 610 (if based on at least one renewable monomer they are branded Zytel RS), and copolymers including a transparent resin called Zytel 330. Resins based on polyphthalamides are branded 'Zytel HTN'. The Zytel product range takes advantage of the fact that nylons are one of the most compatible polymers with modifiers and so offers grades with varying degrees of fiberglass, from 13% to 60% (to increase stiffness and strength), rubber toughened resins and flame retarded grades. Nylon resins with mineral reinforcements are branded 'Minlon'. [1]

Contents

Benefits

The properties of Zytel will vary with the specific formulation. Formulation Zytel HTN 35% Glass Reinforced Resin, consisting of 35% glass fibre by weight, has a tensile strength of around 30kpsi and a flexural modulus of 1500kpsi under room temperature conditions. Zytel also provides chemical resistance to common chemicals such as motor oil, transmission fluid, and methanol, and shows little thermal expansion. [2] Other additives or treatments may be used to increase toughness, wear resistance, and temperature tolerance. [3]

Uses

Related Research Articles

<span class="mw-page-title-main">Kevlar</span> Heat-resistant and strong aromatic polyamide fiber

Kevlar (para-aramid) is a strong, heat-resistant synthetic fiber, related to other aramids such as Nomex and Technora. Developed by Stephanie Kwolek at DuPont in 1965, the high-strength material was first used commercially in the early 1970s as a replacement for steel in racing tires. It is typically spun into ropes or fabric sheets that can be used as such, or as an ingredient in composite material components.

<span class="mw-page-title-main">Nylon</span> Early synthetic polymer developed as a textile fiber

Nylon is a family of synthetic polymers with amide backbones, usually linking aliphatic or semi-aromatic groups.

Aramid fibers, short for aromatic polyamide, are a class of heat-resistant and strong synthetic fibers. They are used in aerospace and military applications, for ballistic-rated body armor fabric and ballistic composites, in marine cordage, marine hull reinforcement, as an asbestos substitute, and in various lightweight consumer items ranging from phone cases to tennis rackets.

A polyamide is a polymer with repeating units linked by amide bonds.

<span class="mw-page-title-main">Stephanie Kwolek</span> American chemist who invented Kevlar (1923–2014)

Stephanie Louise Kwolek is an American chemist who is known for inventing Kevlar. Her career at the DuPont company spanned more than 40 years. She discovered the first of a family of synthetic fibers of exceptional strength and stiffness: poly-paraphenylene terephthalamide.

Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

<span class="mw-page-title-main">Nomex</span> Flame-resistant meta-aramid material

Nomex is a flame-resistant meta-aramid material developed in the early 1960s by DuPont and first marketed in 1967.

<span class="mw-page-title-main">Polyoxymethylene</span> Engineering thermoplastic polymer

Polyoxymethylene (POM), also known as acetal, polyacetal, and polyformaldehyde, is an engineering thermoplastic used in precision parts requiring high stiffness, low friction, and excellent dimensional stability. As with many other synthetic polymers, it is produced by different chemical firms with slightly different formulas and sold variously by such names as Delrin, Kocetal, Ultraform, Celcon, Ramtal, Duracon, Kepital, Polypenco, Tenac and Hostaform.

<span class="mw-page-title-main">Engineering plastic</span> Plastics often used for making mechanical parts

Engineering plastics are a group of plastic materials that have better mechanical or thermal properties than the more widely used commodity plastics.

<span class="mw-page-title-main">Polyphthalamide</span>

Polyphthalamide is a subset of thermoplastic synthetic resins in the polyamide (nylon) family defined as when 55% or more moles of the carboxylic acid portion of the repeating unit in the polymer chain is composed of a combination of terephthalic (TPA) and isophthalic (IPA) acids. The substitution of aliphatic diacids by aromatic diacids in the polymer backbone increases the melting point, glass transition temperature, chemical resistance and stiffness.

<span class="mw-page-title-main">Cordura</span> Trademark for a group of high-performance fabrics developed by DuPont and now owned by Invista

Cordura is a collection of synthetic fiber-based fabric technologies used in a wide array of products including luggage, backpacks, trousers, military wear and performance apparel.

<span class="mw-page-title-main">Vespel</span>

Vespel is the trademark of a range of durable high-performance polyimide-based plastics made by DuPont.

<span class="mw-page-title-main">Plastic bottle</span> Narrow-necked container

A plastic bottle is a bottle constructed from high-density or low density plastic. Plastic bottles are typically used to store liquids such as water, soft drinks, motor oil, cooking oil, medicine, shampoo, milk, and ink. The size ranges from very small bottles to large carboys. Consumer blow molded containers often have integral handles or are shaped to facilitate grasping.

Nylon 66 is a type of polyamide or nylon. It, and nylon 6, are the two most common for textile and plastic industries. Nylon 66 is made of two monomers each containing 6 carbon atoms, hexamethylenediamine and adipic acid, which give nylon 66 its name. Aside from its superior physical characteristics, nylon 66 is attractive because its precursors are inexpensive.

The Remington Nylon 66 was a rifle manufactured by Remington Arms from 1959 to 1989. It was one of the earliest mass-produced rifles to feature a stock made from a material other than wood. Previously the 22-410 Stevens Arms combination gun had been offered with a Tenite stock. The firearms market generally lacked experience with synthetic stocks, making the Nylon 66 a risky gamble for Remington. The model name was taken from the polymer of the same name.

Carbon fiber-reinforced polymers, carbon-fibre-reinforced polymers, carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic, also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.

<span class="mw-page-title-main">Plastic film</span> Thin continuous polymeric material

Plastic film is a thin continuous polymeric material. Thicker plastic material is often called a "sheet". These thin plastic membranes are used to separate areas or volumes, to hold items, to act as barriers, or as printable surfaces.

Glass-filled polymer, is a mouldable composite material. It comprises short glass fibers in a matrix of a polymer material. It is used to manufacture a wide range of structural components by injection or compression moulding. It is an ideal glass alternative that offers flexibility in the part, chemical resistance, shatter resistance and overall better durability.

Nylon 1,6 is a type of polyamide or nylon. Unlike most other nylons, nylon 1,6 is not a condensation polymer, but instead is formed by an acid-catalyzed synthesis from adiponitrile, formaldehyde, and water. The material was produced and studied by researchers at DuPont in the 1950s. Synthesis can be performed at room temperature in open beakers.

References

  1. workflow-process-service. "Plastics, Polymers & Resins - DuPont Performance Materials - DuPont USA". plastics.dupont.com.
  2. workflow-process-service. "Plastics, Polymers & Resins - DuPont Performance Materials - DuPont USA". plastics.dupont.com.
  3. "Polymers in Ski Equipment". AZoM.com. 2 April 2002.
  4. Christie, James (8 April 1997). "Bailey's Shoes Go High-Tech: Spikes to be ready for Skydome sprint" (reprint). The Globe and Mail . Retrieved 4 June 2008.
  5. workflow-process-service. "Plastics, Polymers & Resins - DuPont Performance Materials - DuPont USA". plastics.dupont.com.
  6. "MEET THE M&P FROM SMITH & WESSON" (PDF).