Chemical stability

Last updated

In chemistry, chemical stability is the thermodynamic stability of a chemical system, in particular a chemical compound or a polymer. [1]

Contents

Thermodynamic stability occurs when a system is in its lowest energy state, or in chemical equilibrium with its environment. This may be a dynamic equilibrium in which individual atoms or molecules change form, but their overall number in a particular form is conserved. This type of chemical thermodynamic equilibrium will persist indefinitely unless the system is changed. Chemical systems might undergo changes in the phase of matter or a set of chemical reactions.

State A is said to be more thermodynamically stable than state B if the Gibbs free energy of the change from A to B is positive.

Versus reactivity

Thermodynamic stability applies to a particular system. The reactivity of a chemical substance is a description of how it might react across a variety of potential chemical systems and, for a given system, how fast such a reaction could proceed.

Chemical substances or states can persist indefinitely even though they are not in their lowest energy state if they experience metastability - a state which is stable only if not disturbed too much. A substance (or state) might also be termed "kinetically persistent" if it is changing relatively slowly (and thus is not at thermodynamic equilibrium, but is observed anyway). Metastable and kinetically persistent species or systems are not considered truly stable in chemistry. Therefore, the term chemically stable should not be used by chemists as a synonym of unreactive because it confuses thermodynamic and kinetic concepts. On the other hand, highly chemically unstable species tend to undergo exothermic unimolar decompositions at high rates. Thus, high chemical instability may sometimes parallel unimolar decompositions at high rates. [2]

Outside chemistry

In everyday language, and often in materials science, a chemical substance is said to be "stable" if it is not particularly reactive in the environment or during normal use, and retains its useful properties on the timescale of its expected usefulness. In particular, the usefulness is retained in the presence of air, moisture or heat, and under the expected conditions of application. In this meaning, the material is said to be unstable if it can corrode, decompose, polymerize, burn or explode under the conditions of anticipated use or normal environmental conditions.

Related Research Articles

<span class="mw-page-title-main">Chemical reaction</span> Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products are generated. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

<span class="mw-page-title-main">Metastability</span> Intermediate energetic state within a dynamical system

In chemistry and physics, metastability is an intermediate energetic state within a dynamical system other than the system's state of least energy. A ball resting in a hollow on a slope is a simple example of metastability. If the ball is only slightly pushed, it will settle back into its hollow, but a stronger push may start the ball rolling down the slope. Bowling pins show similar metastability by either merely wobbling for a moment or tipping over completely. A common example of metastability in science is isomerisation. Higher energy isomers are long lived because they are prevented from rearranging to their preferred ground state by barriers in the potential energy.

<span class="mw-page-title-main">Intensive and extensive properties</span> Properties independent of system size, and proportional to system size

Physical or chemical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size of the system changes. The terms "intensive and extensive quantities" were introduced into physics by German mathematician Georg Helm in 1898, and by American physicist and chemist Richard C. Tolman in 1917.

The standard state of a material is a reference point used to calculate its properties under different conditions. A degree sign (°) or a superscript Plimsoll symbol () is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°). The degree symbol has become widespread, although the Plimsoll is recommended in standards, see discussion about typesetting below.

<span class="mw-page-title-main">Suspension (chemistry)</span> Heterogeneous mixture of solid particles dispersed in a medium

In chemistry, a suspension is a heterogeneous mixture of a fluid that contains solid particles sufficiently large for sedimentation. The particles may be visible to the naked eye, usually must be larger than one micrometer, and will eventually settle, although the mixture is only classified as a suspension when and while the particles have not settled out.

In chemistry, reactivity is the impulse for which a chemical substance undergoes a chemical reaction, either by itself or with other materials, with an overall release of energy.

<span class="mw-page-title-main">Product (chemistry)</span> Species formed from chemical reactions

Products are the species formed from chemical reactions. During a chemical reaction, reactants are transformed into products after passing through a high energy transition state. This process results in the consumption of the reactants. It can be a spontaneous reaction or mediated by catalysts which lower the energy of the transition state, and by solvents which provide the chemical environment necessary for the reaction to take place. When represented in chemical equations, products are by convention drawn on the right-hand side, even in the case of reversible reactions. The properties of products such as their energies help determine several characteristics of a chemical reaction, such as whether the reaction is exergonic or endergonic. Additionally, the properties of a product can make it easier to extract and purify following a chemical reaction, especially if the product has a different state of matter than the reactants.

<span class="mw-page-title-main">Activated complex</span>

In chemistry, an activated complex represents a collection of intermediate structures in a chemical reaction when bonds are breaking and forming. The activated complex is an arrangement of atoms in an arbitrary region near the saddle point of a potential energy surface. The region represents not one defined state, but a range of unstable configurations that a collection of atoms pass through between the reactants and products of a reaction. Activated complexes have partial reactant and product character, which can significantly impact their behaviour in chemical reactions.

<span class="mw-page-title-main">Conformational isomerism</span> Different molecular structures formed only by rotation about single bonds

In chemistry, conformational isomerism is a form of stereoisomerism in which the isomers can be interconverted just by rotations about formally single bonds. While any two arrangements of atoms in a molecule that differ by rotation about single bonds can be referred to as different conformations, conformations that correspond to local minima on the potential energy surface are specifically called conformational isomers or conformers. Conformations that correspond to local maxima on the energy surface are the transition states between the local-minimum conformational isomers. Rotations about single bonds involve overcoming a rotational energy barrier to interconvert one conformer to another. If the energy barrier is low, there is free rotation and a sample of the compound exists as a rapidly equilibrating mixture of multiple conformers; if the energy barrier is high enough then there is restricted rotation, a molecule may exist for a relatively long time period as a stable rotational isomer or rotamer. When the time scale for interconversion is long enough for isolation of individual rotamers, the isomers are termed atropisomers. The ring-flip of substituted cyclohexanes constitutes another common form of conformational isomerism.

In chemistry, homolysis or homolytic fission is the dissociation of a molecular bond by a process where each of the fragments retains one of the originally bonded electrons. During homolytic fission of a neutral molecule with an even number of electrons, two free radicals will be generated. That is, the two electrons involved in the original bond are distributed between the two fragment species. Bond cleavage is also possible by a process called heterolysis.

Gas phase ion chemistry is a field of science encompassed within both chemistry and physics. It is the science that studies ions and molecules in the gas phase, most often enabled by some form of mass spectrometry. By far the most important applications for this science is in studying the thermodynamics and kinetics of reactions. For example, one application is in studying the thermodynamics of the solvation of ions. Ions with small solvation spheres of 1, 2, 3... solvent molecules can be studied in the gas phase and then extrapolated to bulk solution.

<span class="mw-page-title-main">Hammond's postulate</span> Hypothesis in physical organic chemistry

Hammond's postulate, is a hypothesis in physical organic chemistry which describes the geometric structure of the transition state in an organic chemical reaction. First proposed by George Hammond in 1955, the postulate states that:

If two states, as, for example, a transition state and an unstable intermediate, occur consecutively during a reaction process and have nearly the same energy content, their interconversion will involve only a small reorganization of the molecular structures.

A dispersion is a system in which distributed particles of one material are dispersed in a continuous phase of another material. The two phases may be in the same or different states of matter.

The photostationary state of a reversible photochemical reaction is the equilibrium chemical composition under a specific kind of electromagnetic irradiation.

In chemistry, coalescence is a process in which two phase domains of the same composition come together and form a larger phase domain. In other words, the process by which two or more separate masses of miscible substances seem to "pull" each other together should they make the slightest contact.

<span class="mw-page-title-main">Interpenetrating polymer network</span>

An Interpenetrating polymer network (IPN) is a polymer comprising two or more networks which are at least partially interlaced on a polymer scale but not covalently bonded to each other. The network cannot be separated unless chemical bonds are broken. The two or more networks can be envisioned to be entangled in such a way that they are concatenated and cannot be pulled apart, but not bonded to each other by any chemical bond.

Unimolecular ion decomposition is the fragmentation of a gas phase ion in a reaction with a molecularity of one. Ions with sufficient internal energy may fragment in a mass spectrometer, which in some cases may degrade the mass spectrometer performance, but in other cases, such as tandem mass spectrometry, the fragmentation can reveal information about the structure of the ion.

An active center in polymer science refers to the site on a chain carrier at which reaction occurs.

<span class="mw-page-title-main">Aminoxyl group</span>

Aminoxyl denotes a radical functional group with general structure R2N–O. It is commonly known as a nitroxyl radical or a nitroxide, however IUPAC discourages the use of these terms, as they erroneously suggest the presence of a nitro group. Aminoxyls are structurally related to hydroxylamines and N-oxoammonium salts, with which they can interconvert via a series of redox steps.

<span class="mw-page-title-main">Phase separation</span> Creation of two phases of matter from a single homogenous mixture

Phase separation is the creation of two distinct phases from a single homogeneous mixture. The most common type of phase separation is between two immiscible liquids, such as oil and water. This type of phase separation is known as liquid-liquid equilibrium. Colloids are formed by phase separation, though not all phase separations forms colloids - for example oil and water can form separated layers under gravity rather than remaining as microscopic droplets in suspension.

References

  1. International Union of Pure and Applied Chemistry (February 24, 2014). "Stable". In McNaught, A. D.; Wilkinson, A.; Chalk, S. J. (eds.). Compendium of Chemical Terminology (2nd Online ed.). doi:10.1351/goldbook. ISBN   978-0-9678550-9-7.
  2. International Union of Pure and Applied Chemistry (February 24, 2014). "Stable". In McNaught, A. D.; Wilkinson, A.; Chalk, S. J. (eds.). Compendium of Chemical Terminology (2nd Online ed.). doi:10.1351/goldbook. ISBN   978-0-9678550-9-7 . Retrieved December 6, 2020.