The word hydrolysis is applied to chemical reactions in which a substance reacts with water. In organic chemistry, the products of the reaction are usually molecular, being formed by combination with H and OH groups (e.g., hydrolysis of an ester to an alcohol and a carboxylic acid). In inorganic chemistry, the word most often applies to cations forming soluble hydroxide or oxide complexes with, in some cases, the formation of hydroxide and oxide precipitates.
The hydrolysis reaction for a hydrated metal ion in aqueous solution can be written as:
and the corresponding formation constant as:
and associated equilibria can be written as:
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [1] | Brown and Ekberg, 2016 [2] | Hummel and Thoenen, 2023 [3] |
---|---|---|---|
Al3+ + H2O ⇌ AlOH2+ + H+ | –4.97 | −4.98 ± 0.02 | −4.98 ± 0.02 |
Al3+ + 2 H2O ⇌ Al(OH)2+ + 2 H+ | –9.3 | −10.63 ± 0.09 | −10.63 ± 0.09 |
Al3+ + 3 H2O ⇌ Al(OH)3 + 3 H+ | –15.0 | −15.66 ± 0.23 | −15.99 ± 0.23 |
Al3+ + 4 H2O ⇌ Al(OH)4– + 4 H+ | –23.0 | −22.91 ± 0.10 | −22.91 ± 0.10 |
2 Al3+ + 2 H2O ⇌ Al2(OH)24+ + 2 H+ | –7.7 | −7.62 ± 0.11 | −7.62 ± 0.11 |
3 Al3+ + 4 H2O ⇌ Al3(OH)45+ + 4 H+ | –13.94 | −14.06 ± 0.22 | −13.90 ± 0.12 |
13 Al3+ + 28 H2O ⇌ Al13O4(OH)247+ + 32 H+ | –98.73 | −100.03 ± 0.09 | −100.03 ± 0.09 |
α-Al(OH)3(s) + 3 H+ ⇌ Al3+ + 3 H2O | 8.5 | 7.75 ± 0.08 | 7.75 ± 0.08 |
γ-AlOOH(s) + 3 H+ ⇌ Al3+ + 2 H2O | 7.69 ± 0.15 | 9.4 ± 0.4 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | NIST46 [4] | Brown and Ekberg, 2016 [5] | Grenthe et al, 2020 [6] |
---|---|---|---|
Am3+ + H2O ⇌ Am(OH)2+ + H+ | –6.5 ± 0.1 | –7.22 ± 0.03 | –7.2 ± 0.5 |
Am3+ + 2 H2O ⇌ Am(OH)2+ + 2 H+ | –14.1 ± 0.3 | –14.9 ± 0.2 | –15.1 ± 0.7 |
Am3+ + 3 H2O ⇌ Am(OH)3 + 3 H+ | –25.7 | –26.0 ± 0.2 | –26.2 ± 0.5 |
Am3+ + 3 H2O ⇌ Am(OH)3(am) + 3 H+ | –16.9 ± 0.1 | –16.9 ± 0.8 | –16.9 ± 0.8 |
Am3+ + 3 H2O ⇌ Am(OH)3(cr) + 3 H+ | –15.2 | –15.62 ± 0.04 | –15.6 ± 0.6 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016 [7] | Grenthe et al, 2020 [6] |
---|---|---|
AmO2+ + H2O ⇌ AmO2(OH) + H+ | –10.7 ± 0.2 | |
AmO2+ + 2 H2O ⇌ AmO2(OH)2– + 2 H+ | –22.9 ± 0.7 | |
AmO2+ + H2O ⇌ AmO2(OH)(am) + H+ | –5.4 ± 0.4 | –5.3 ± 0.5 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [8] | Lothenbach et al., 1999; [9] Kitamura et al., 2010 [10] | Filella and May, 2003 [11] |
---|---|---|---|
Sb(OH)3 + H+ ⇌ Sb(OH)2+ + H2O | 1.41 | 1.30 | 1.371 |
Sb(OH)3 + H2O ⇌ Sb(OH)4‒ + H+ | ‒11.82 | ‒11.93 | ‒11.70 |
0.5 Sb2O3(s) + 1.5 H2O ⇌ Sb(OH)3 | ‒4.24 | ||
Sb2O3(rhombic,s) + 3 H2O ⇌ 2 Sb(OH)3 | ‒8.72 | ‒10.00 | |
Sb2O3(cubic,s) + 3 H2O ⇌ 2 Sb(OH)3 | ‒11.40 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [8] | Lothenbach et al., 1999; [9] Kitamura et al., 2010 [10] |
---|---|---|
Sb(OH)5 + H2O ⇌ Sb(OH)6‒ + H+ | ‒2.72 | ‒2.72 |
12 Sb(OH)5 + 4 H2O ⇌ Sb12(OH)644‒ + 4 H+ | 20.34 | 20.34 |
12 Sb(OH)5 + 5 H2O ⇌ Sb12(OH)655‒ + 5 H+ | 16.72 | 16.72 |
12 Sb(OH)5 + 6 H2O ⇌ Sb12(OH)666‒ + 6 H+ | 11.89 | 11.89 |
12 Sb(OH)5 + 7 H2O ⇌ Sb12(OH)677‒ + 7 H+ | 6.07 | 6.07 |
0.5 Sb2O5(s) + 2.5 H2O ⇌ Sb(OH)5 | ‒3.7 | |
Sb2O5(am) + 5 H2O ⇌ 2 Sb(OH)5 | ‒7.400 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [12] | Nordstrom and Archer, 2003 [13] | Nordstrom et al., 2014 [14] |
---|---|---|---|
As(OH)4‒ + H+ ⇌ As(OH)3 + H2O | 9.29 | 9.17 | 9.24 ± 0.02 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer [12] | Khodakovsky et al. (1968) [15] | Nordstrom and Archer, 2003 [13] | Nordstrom et al., 2014 [14] |
---|---|---|---|---|
H2AsO4‒ + H+ ⇌ H3AsO4 | 2.24 | 2.21 | 2.26 ± 0.078 | 2.25 ± 0.04 |
HAsO42‒ + H+ ⇌ H2AsO4‒ | 6.93 | 6.99 ± 0.1 | 6.98 ± 0.11 | |
AsO43‒ + H+ ⇌ HAsO42‒ | 11.51 | 11.80 ± 0.1 | 11.58 ± 0.05 | |
HAsO42‒ + 2 H+ ⇌H3AsO4 | 9.20 | |||
AsO43‒ + 3 H+ ⇌ H3AsO4 | 20.70 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [16] | Nordstrom et al., 1990 [17] | Brown and Ekberg, 2016 [18] |
---|---|---|---|
Ba2+ + H2O ⇌ BaOH+ + H+ | –13.47 | –13.47 | –13.32 ± 0.07 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016 [19] |
---|---|
Bk3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+ | –13.5 ± 1.0 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [20] |
---|---|
Be2+ + H2O ⇌ BeOH+ + H+ | –5.10 |
Be2+ + 2 H2O ⇌ Be(OH)2 + 2 H+ | –23.65 |
Be2+ + 3 H2O ⇌ Be(OH)3– + 3 H+ | –23.25 |
Be2+ + 4 H2O ⇌ Be(OH)42– + 4 H+ | –37.42 |
2 Be2+ + H2O ⇌ Be2OH3+ + H+ | –3.97 |
3 Be2+ + 3 H2O ⇌ Be3(OH)33+ + 3 H+ | –8.92 |
6 Be2+ + 8 H2O ⇌ Be6(OH)84+ + 8 H+ | –27.2 |
α-Be(OH)2(cr) + 2 H+ ⇌ Be2+ + 2 H2O | 6.69 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [21] | Lothenbach et al., 1999 [9] | NIST46 [4] | Kitamura et al., 2010 [10] | Brown and Ekberg, 2016 [22] |
---|---|---|---|---|---|
Bi3+ + H2O ⇌ BiOH2+ + H+ | –1.0 | –0.92 | –1.1 | –0.920 | –0.92 ± 0.15 |
Bi3+ + 2 H2O ⇌ Bi(OH)2+ + 2 H+ | (–4) | –2.56 | –4.5 | –2.560 ± 1.000 | –2.59 ± 0.26 |
Bi3+ + 3 H2O ⇌ Bi(OH)3 + 3 H+ | –8.86 | –5.31 | –9.0 | –8.940 ± 0.500 | –8.78 ± 0.20 |
Bi3+ + 4 H2O ⇌ Bi(OH)4– + 4 H+ | –21.8 | –18.71 | –21.2 | –21.660 ± 0.870 | –22.06 ± 0.14 |
3 Bi3+ + 4 H2O ⇌ Bi3(OH)45+ + 4 H+ | –0.80 | –0.800 | |||
6 Bi3+ + 12 H2O ⇌ Bi6(OH)126+ + 12 H+ | 1.34 | 1.340 | 0.98 ± 0.13 | ||
9 Bi3+ + 20 H2O = Bi9(OH)207+ + 20 H+ | –1.36 | –1.360 | |||
9 Bi3+ + 21 H2O = Bi9(OH)216+ + 21 H+ | –3.25 | –3.250 | |||
9 Bi3+ + 22 H2O = Bi9(OH)225+ + 22 H+ | –4.86 | –4.860 | |||
Bi(OH)3(am) + 3 H+ = Bi3+ + 3 H2O | 31.501 ± 0.927 | ||||
α-Bi2O3(cr) + 6 H+ = 2 Bi3+ + 3 H2O | 0.76 | ||||
BiO1.5(s, α) + 3 H+ = Bi3+ + 1.5 H2O | 3.46 | 31.501 ± 0.927 | 2.88 ± 0.64 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [23] | NIST46 [4] |
---|---|---|
B(OH)3 + H2O ⇌ Be(OH)4+ + H+ | –9.236 | –9.236 ± 0.002 |
2 B(OH)3 ⇌ B2(OH)5– + H+ | –9.36 | –9.306 |
3 B(OH)3 ⇌ B3O3(OH)4– + H+ + 2 H2O | –7.03 | –7.306 |
4 B(OH)3 ⇌ B4O5(OH)42– + 2 H+ + 3 H2O | –16.3 | –15.032 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [24] | Powell et al., 2011 [25] | Brown and Ekberg, 2016 [26] |
---|---|---|---|
Cd2+ + H2O ⇌ CdOH+ + H+ | −10.08 | –9.80 ± 0.10 | −9.81 ± 0.10 |
Cd2+ + 2 H2O ⇌ Cd(OH)2 + 2 H+ | –20.35 | –20.19 ± 0.13 | −20.6 ± 0.4 |
Cd2+ + 3 H2O ⇌ Cd(OH)3– + 3 H+ | <–33.3 | –33.5 ± 0.5 | −33.5 ± 0.5 |
Cd2+ + 4 H2O ⇌ Cd(OH)42– + 4 H+ | –47.35 | –47.28 ± 0.15 | −47.25 ± 0.15 |
2 Cd2+ + H2O ⇌ Cd2OH3+ + H+ | –9.390 | –8.73 ± 0.01 | −8.74 ± 0.10 |
4 Cd2+ + 4 H2O ⇌ Cd4(OH)44+ + H+ | –32.85 | ||
Cd(OH)2(s) ⇌ Cd2+ + 2 OH– | –14.28 ± 0.12 | ||
Cd(OH)2(s) + 2 H+ ⇌ Cd2+ + 2 H2O | 13.65 | 13.72 ± 0.12 | 13.71 ± 0.12 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [16] | Nordstrom et al., 1990 [17] | Brown and Ekberg, 2016 [27] |
---|---|---|---|
Ca2+ + H2O ⇌ CaOH+ + H+ | –12.85 | –12.78 | –12.57 ± 0.03 |
Ca(OH)2(cr) + 2 H+ ⇌ Ca2+ + 2 H2O | 22.80 | 22.8 | 22.75 ± 0.02 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016 [19] |
---|---|
Cf3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+ | –13.0 ± 1.0 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | NIST46 [4] | Brown and Ekberg, 2016 [29] |
---|---|---|---|
Ce3+ + H2O ⇌ CeOH2+ + H+ | –8.3 | –8.3 | –8.31 ± 0.03 |
2 Ce3+ + 2 H2O ⇌ Ce2(OH)24+ + 2 H+ | –16.0 ± 0.2 | ||
3 Ce3+ + 5 H2O ⇌ Ce3(OH)54+ + 5 H+ | –34.6 ± 0.3 | ||
Ce(OH)3(s) + 3 H+ ⇌ Ce3+ + 3 H2O | 18.5 ± 0.5 | ||
Ce(OH)3(s) ⇌ Ce3+ + 3 OH– | –22.1 ± 0.9 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K (The divalent state is unstable in water, producing hydrogen whilst being oxidised to a higher valency state (Baes and Mesmer, 1976). The reliability of the data is in doubt.):
Reaction | NIST46 [4] | Ball and Nordstrom, 1988 [30] |
---|---|---|
Cr2+ + H2O ⇌ CrOH+ + H+ | –5.5 | |
Cr(OH)2(s) ⇌ Cr2+ + 2 OH– | –17 ± 0.02 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [31] | Rai et al., 1987 [32] | Ball and Nordstrom, 1988 [30] | Brown and Ekberg, 2016 [33] |
---|---|---|---|---|
Cr3+ + H2O ⇌ CrOH2+ + H+ | –4.0 | –3.57 ± 0.08 | –3.60 ± 0.07 | |
Cr3+ + 2 H2O ⇌ Cr(OH)2+ + 2 H+ | –9.7 | –9.84 | –9.65 ± 0.20 | |
Cr3+ + 3 H2O ⇌ Cr(OH)3 + 3 H+ | –18 | –16.19 | –16.25 ± 0.19 | |
Cr3+ + 4 H2O ⇌ Cr(OH)4- + 4 H+ | –27.4 | –27.65 ± 0.12 | –27.56 ± 0.21 | |
2 Cr3+ + 2 H2O ⇌ Cr2(OH)24+ + 2 H+ | –5.06 | –5.0 | –5.29 ± 0.16 | |
3 Cr3+ + 4 H2O ⇌ Cr3(OH)45+ + 4 H+ | –8.15 | –10.75 ± 0.15 | –9.10 ± 0.14 | |
Cr(OH)3(s) + 3 H+ ⇌ Cr3+ + 3 H2O | 12 | 9.35 | 9.41 ± 0.17 | |
Cr2O3(s) + 6 H+ ⇌ 2 Cr3+ + 3 H2O | 8.52 | |||
CrO1.5(s) + 3 H+ ⇌ Cr3+ + 1.5 H2O | 7.83 ± 0.10 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [34] | Ball and Nordstrom, 1998 [30] |
---|---|---|
CrO42– + H+ ⇌ HCrO4– | 6.51 | 6.55 ± 0.04 |
HCrO4– + H+ ⇌ H2CrO4 | –0.20 | |
CrO42– + 2 H+ ⇌ H2CrO4 | 6.31 | |
2 HCrO4– ⇌ Cr2O72– + H2O | 1.523 | |
2 CrO42– + 2 H+ ⇌ Cr2O72– + H2O | 14.7 ± 0.1 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [35] | Brown and Ekberg, 2016 [36] |
---|---|---|
Co2+ + H2O ⇌ CoOH+ + H+ | –9.65 | −9.61 ± 0.17 |
Co2+ + 2 H2O ⇌ Co(OH)2 + 2 H+ | –18.8 | −19.77 ± 0.11 |
Co2+ + 3 H2O ⇌ Co(OH)3– + 3 H+ | –31.5 | −32.01 ± 0.33 |
Co2+ + 4 H2O ⇌ Co(OH)42– + 4 H+ | –46.3 | |
2 Co2+ + H2O ⇌ Co2(OH)3+ + H+ | –11.2 | |
4 Co2+ + 4 H2O ⇌ Co4(OH)44+ + 4H+ | –30.53 | |
Co(OH)2(s) + 2 H+ ⇌ Co2+ + 2 H2O | 12.3 | 13.24 ± 0.12 |
CoO(s) + 2 H+ ⇌ Co2+ + H2O | 13.71 ± 0.10 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016 [37] |
---|---|
Co3+ + H2O ⇌ CoOH2+ + H+ | −1.07 ± 0.11 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016 [38] |
---|---|
Cu+ + H2O ⇌ CuOH + H+ | –7.8 ± 0.4 |
Cu+ + 2 H2O ⇌ Cu(OH)2– + 2 H+ | –18.6 ± 0.6 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [39] | NIST46 [4] | Plyasunova et al., 1997 [40] | Powell et al., 2007 [41] | Brown and Ekberg, 2016 [38] |
---|---|---|---|---|---|
Cu2+ + H2O ⇌ CuOH+ + H+ | < –8 | –7.7 | –7.97 ± 0.09 | –7.95 ± 0.16 | –7.64 ± 0.17 |
Cu2+ + 2 H2O ⇌ Cu(OH)2 + 2 H+ | (< –17.3) | –17.3 | –16.23 ± 0.15 | –16.2 ± 0.2 | –16.24 ± 0.03 |
Cu2+ + 3 H2O ⇌ Cu(OH)3– + 3 H+ | (< –27.8) | –27.8 | –26.63 ± 0.40 | –26.60 ± 0.09 | –26.65 ± 0.13 |
Cu2+ + 4 H2O ⇌ Cu(OH)42– + 4 H+ | –39.6 | –39.6 | –39.73 ± 0.17 | –39.74 ± 0.18 | –39.70 ± 0.19 |
2 Cu2+ + H2O ⇌ Cu2(OH)3+ + H+ | –6.71 ± 0.30 | –6.40 ± 0.12 | –6.41 ± 0.17 | ||
2 Cu2+ + 2 H2O ⇌ Cu2(OH)22+ + 2 H+ | –10.36 | –10.3 | –10.55 ± 0.17 | –10.43 ± 0.07 | –10.55 ± 0.02 |
3 Cu2+ + 4 H2O ⇌ Cu3(OH)42+ + 4 H+ | –20.95 ± 0.30 | –21.1 ± 0.2 | –21.2 ± 0.4 | ||
CuO(s) + 2 H+ ⇌ Cu2+ + H2O | 7.62 | 7.64 ± 0.06 | 7.64 ± 0.06 | 7.63 ± 0.05 | |
Cu(OH)2(s) + 2 H+ ⇌ Cu2+ + 2 H2O | 8.67 ± 0.05 | 8.68 ± 0.10 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016 [42] |
---|---|
Cm3+ + H2O ⇌ Cm(OH)2+ + H+ | −7.66 ± 0.07 |
Cm3+ + 2 H2O ⇌ Cm(OH)2+ + 2 H+ | −15.9 ± 0.1 |
Cm3+ + 3 H2O ⇌ Cm(OH)3(s) + 3 H+ | −13.9 ± 0.4 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | Brown and Ekberg, 2016 [43] |
---|---|---|
Dy3+ + H2O ⇌ DyOH2+ + H+ | −8.0 | −7.53 ± 0.14 |
Dy3+ + 2 H2O ⇌ Dy(OH)2+ + 2 H+ | (–16.2) | |
Dy3+ + 3 H2O ⇌ Dy(OH)3 + 3 H+ | (–24.7) | |
Dy3+ + 4 H2O ⇌ Dy(OH)4− + 4 H+ | –33.5 | |
2 Dy3+ + 2 H2O ⇌ Dy2(OH)24+ + 2 H+ | −13.76 ± 0.20 | |
3 Dy3+ + 5 H2O ⇌ Dy3(OH)54+ + 5 H+ | −30.6 ± 0.3 | |
Dy(OH)3(s) + 3 H+ ⇌ Dy3+ + 3 H2O | 15.9 | 16.26 ± 0.30 |
Dy(OH)3(c) + OH− ⇌ Dy(OH)4− | −3.6 | |
Dy(OH)3(c) ⇌ Dy(OH)3 | −8.8 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | Brown and Ekberg, 2016 [44] |
---|---|---|
Er3+ + H2O ⇌ ErOH2+ + H+ | −7.9 | −7.46 ± 0.09 |
Er3+ + 2 H2O ⇌ Er(OH)2+ + 2 H+ | (−15.9) | |
Er3+ + 3 H2O ⇌ Er(OH)3 + 3 H+ | (−24.2) | |
Er3+ + 4 H2O ⇌ Er(OH)4− + 4 H+ | −32.6 | |
2 Er3+ + 2 H2O ⇌ Er2(OH)24+ + 2 H+ | −13.65 | −13.50 ± 0.20 |
3 Er3+ + 5 H2O ⇌ Er3(OH)54+ + 5 H+ | <−29.3 | −31.0 ± 0.3 |
Er(OH)3(s) + 3 H+ ⇌ Er3+ + 3 H2O | 15.0 | 15.79 ± 0.30 |
Er(OH)3(c) + OH− ⇌ Er(OH)4− | −3.6 | |
Er(OH)3(c) ⇌ Er(OH)3 | ~ −9.2 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | NIST46 [4] | Hummel et al., 2002 [45] | Brown and Ekberg, 2016 [29] |
---|---|---|---|---|
Eu3+ + H2O ⇌ EuOH2+ + H+ | –7.8 | –7.64 ± 0.04 | –7.66 ± 0.05 | |
Eu3+ + 2 H2O ⇌ Eu(OH)2+ + 2 H+ | –15.1 ± 0.2 | |||
Eu3+ + 3 H2O ⇌ Eu(OH)3 + 3 H+ | –23.7 ± 0.1 | |||
Eu3+ + 4 H2O ⇌ Eu(OH)4− + 4 H+ | –36.2 ± 0.5 | |||
2 Eu3+ + 2 H2O ⇌ Eu2(OH)24+ + 2 H+ | - | –14.1 ± 0.2 | ||
3 Eu3+ + 5 H2O ⇌ Eu3(OH)54+ + 5 H+ | - | –32.0 ± 0.3 | ||
Eu(OH)3(s) + 3 H+ ⇌ Eu3+ + 3 H2O | 17.5 | 17.6 ± 0.8 (am) 14.9 ± 0.3 (cr) | 16.48 ± 0.30 | |
Eu(OH)3(s) ⇌ Eu3+ + 3 OH– | –24.5 ± 0.7 (am) –26.5 (cr) |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | Brown and Ekberg, 2016 [46] |
---|---|---|
Gd3+ + H2O ⇌ GdOH2+ + H+ | –8.0 | –7.87 ± 0.05 |
Gd3+ + 2 H2O ⇌ Gd(OH)2+ + 2 H+ | (–16.4) | |
Gd3+ + 3 H2O ⇌ Gd(OH)3 + 3 H+ | (–25.2) | |
Gd3+ + 4 H2O ⇌ Gd(OH)4– + 4 H+ | –34.4 | |
2 Gd3+ + 2 H2O ⇌ Gd2(OH)24+ + 2 H+ | –14.16 ± 0.20 | |
3 Gd3+ + 5 H2O ⇌ Gd3(OH)54+ + 5 H+ | –33.0 ± 0.3 | |
Gd(OH)3(s) + 3 H+ ⇌ Gd3+ + 3 H2O | 15.6 | 17.20 ± 0.48 |
Gd(OH)3(c) + OH– ⇌ Gd(OH)4– | –4.8 | |
Gd(OH)3(c) ⇌ Gd(OH)3 | –9.6 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [47] | Smith et al., 2003 [48] | Brown and Ekberg, 2016 [49] |
---|---|---|---|
Ga3+ + H2O ⇌ GaOH2+ + H+ | –2.6 | –2.897 | –2.74 |
Ga3+ + 2 H2O ⇌ Ga(OH)2+ + 2 H+ | –5.9 | –6.694 | –7.0 |
Ga3+ + 3 H2O ⇌ Ga(OH)3 + 3 H+ | –10.3 | –11.96 | |
Ga3+ + 4 H2O ⇌ Ga(OH)4– + 4 H+ | –16.6 | –16.588 | –15.52 |
Ga(OH)3(s) ⇌ Ga3+ + 3 OH– | –37 | –37.0 | |
GaO(OH)(s) + H2O ⇌ Ga3+ + 3 OH– | –39.06 | –39.1 | –40.51 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [50] | Wood and Samson, 2006 [51] | Filella and May, 2023 [52] |
---|---|---|---|
Ge(OH)4 ⇌ GeO(OH)3- + H+ | –9.31 | –9.32 ± 0.05 | –9.099 |
Ge(OH)4 ⇌ GeO2(OH)22+ + 2 H+ | –21.9 | ||
GeO2(OH)22– + H+ ⇌ GeO(OH)3– | 12.76 | ||
8 Ge(OH)4 ⇌ Ge8O16(OH)33- + 13 H2O + 3 H+ | –14.24 | ||
8 Ge(OH)4 + 3 OH– ⇌ Ge8(OH)353– | 28.33 | ||
GeO2(s, hexa) + 2 H2O ⇌ Ge(OH)4 | –1.35 | –1.373 | |
GeO2(s, tetra) + 2 H2O ⇌ Ge(OH)4 | -4.37 | –5.02 | –4.999 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [53] |
---|---|
Au(OH)3 +2 H+ ⇌ AuOH2+ + 2 H2O | 1.51 |
Au(OH)3 + H+ ⇌ Au(OH)2+ + H2O | < 1.0 |
Au(OH)3 + H2O ⇌ Au(OH)4– + H+ | –11.77 |
Au(OH)3 + 2 H2O ⇌ Au(OH)52– + 2 H+ | –25.13 |
Au(OH)52– + 3 H2O ⇌ Au(OH)63– + 3 H+ | < –41.1 |
Au(OH)3(c) ⇌ Au(OH)3 | –5.51 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [54] | Brown and Ekberg, 2016 [55] |
---|---|---|
Hf4+ + H2O ⇌ HfOH3+ + H+ | –0.25 | −0.26 ± 0.10 |
Hf4+ + 2 H2O ⇌ Hf(OH)22+ + 2 H+ | (–2.4) | |
Hf4+ + 3 H2O ⇌ Hf(OH)3+ + 3 H+ | (–6.0) | |
Hf4+ + 4 H2O ⇌ Hf(OH)4 + 4 H+ | –10.7* | −3.75 ± 0.34* |
Hf4+ + 5 H2O ⇌ Hf(OH)5– + 5 H+ | –17.2 | |
3 Hf4+ + 4 H2O ⇌ Hf3(OH)48+ + 4 H+ | 0.55 ± 0.30 | |
4 Hf4+ + 8 H2O ⇌ Hf4(OH)88+ + 8 H+ | 6.00 ± 0.30 | |
HfO2(s) + 4 H+ ⇌ Hf4+ + 2 H2O | –1.2* | –5.56 ± 0.15* |
HfO2(am) + 4 H+ ⇌ Hf4+ + 2 H2O | –3.11 ± 0.20 |
*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. Strongly suggested to refer to the original papers.
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | Brown and Ekberg, 2016 [56] |
---|---|---|
Ho3+ + H2O ⇌ HoOH2+ + H+ | −8.0 | −7.43 ± 0.05 |
2 Ho3+ + 2 H2O ⇌ Ho2(OH)24+ + 2 H+ | −13.5 ± 0.2 | |
3 Ho3+ + 5 H2O ⇌ Ho3(OH)54+ + 5 H+ | −30.9 ± 0.3 | |
Ho(OH)3(s) + 3 H+ ⇌ Ho3+ + 3 H2O | 15.4 | 15.60 ± 0.30 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [57] | NIST46 [4] | Brown and Ekberg, 2016 [58] |
---|---|---|---|
In3+ + H2O ⇌ InOH2+ + H+ | –4.00 | –3.927 | –3.96 |
In3+ + 2 H2O ⇌ In(OH)2+ + 2 H+ | –7.82 | –7.794 | –9.16 |
In3+ + 3 H2O ⇌ In(OH)3 + 3 H+ | –12.4 | –12.391 | |
In3+ + 4 H2O ⇌ In(OH)4– + 4 H+ | –22.07 | –22.088 | –22.05 |
In(OH)3(s) ⇌ In3+ + 3 OH– | –36.92 | –36.9 | –36.92 |
1/2 In2O3(s) + 3/2 H2O ⇌ In3+ + 3 OH– | –35.24 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016 [59] |
---|---|
Ir3+ + H2O ⇌ IrOH2+ + H+ | ‒3.77 ± 0.10 |
Ir3+ + 2 H2O ⇌ Ir(OH)2+ + 2 H+ | ‒8.46 ± 0.20 |
Ir(OH)3(s) + 3 H+ ⇌ Ir3+ + 3 H2O | 8.88 ± 0.20 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [60] | Nordstrom et al., 1990 [17] | Hummel et al., 2002 [45] | Lemire et al., 2013 [61] | Brown and Ekberg, 2016 [62] |
---|---|---|---|---|---|
Fe2+ + H2O ⇌ FeOH+ + H+ | –9.3 | –9.5 | –9.5 | –9.1 ± 0.4 | −9.43 ± 0.10 |
Fe2+ + 2 H2O ⇌ Fe(OH)2 + 2 H+ | –20.5 | −20.52 ± 0.08 | |||
Fe2+ + 3 H2O ⇌ Fe(OH)3- + 3 H+ | –29.4 | −32.68 ± 0.15 | |||
Fe(OH)2(s) +2 H+ ⇌ Fe2+ + 2 H2O | 12.27 ± 0.88 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [60] | Lemire et al., 2013 [61] | Brown and Ekberg, 2016 [63] |
---|---|---|---|
Fe3+ + H2O ⇌ FeOH2+ + H+ | –2.19 | −2.15 ± 0.07 | –2.20 ± 0.02 |
Fe3+ + 2 H2O ⇌ Fe(OH)2+ + 2 H+ | –5.67 | −4.8 ± 0.4 | –5.71 ± 0.10 |
Fe3+ + 3 H2O ⇌ Fe(OH)3 + 3 H+ | <–12 | <–14 | –12.42 ± 0.20 |
Fe3+ + 4 H2O ⇌ Fe(OH)4– + 4 H+ | –21.6 | −21.5 ± 0.5 | –21.60 ± 0.23 |
2 Fe3+ + 2 H2O ⇌ Fe2(OH)24+ + 2 H+ | –2.95 | –2.91 ± 0.07 | –2.91 ± 0.07 |
3 Fe3+ + 4 H2O ⇌ Fe3(OH)45+ + 4 H+ | –6.3 | −6.3 ± 0.1 | |
Fe(OH)3(s) +3 H+ ⇌ Fe3+ + 3 H2O 2-line ferrihydrite | 2.5 | 3.5 | 3.50 ± 0.20 |
Fe(OH)3(s) ⇌ Fe3+ + 3 OH− 6-line ferrihydrite | −38.97 ± 0.64 | ||
α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O goethite | 0.5 | 0.33 ± 0.10 | |
α-FeOOH + H2O ⇌ Fe3+ + 3 OH− goethite | −41.83 ± 0.37 | ||
0.5 α-Fe2O3(s)+ 3 H+ ⇌ Fe3+ + 1.5 H2O hematite | 0.36 ± 0.40 | ||
0.5 α-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH− hematite | −42.05 ± 0.26 | ||
0.5 γ-Fe2O3(s) + 3 H+ ⇌ Fe3+ + 1.5 H2O maghemite | 1.61 ± 0.61 | ||
0.5 γ-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH− maghemite | −40.59 ± 0.29 | ||
α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O lepidocrocite | 1.85 ± 0.37 | ||
γ-FeOOH + H2O ⇌ Fe3+ + 3 OH− lepidocrocite | −40.13 ± 0.37 | ||
Fe(OH)3(s) + 3 H+ ⇌ Fe3+ + 3 H2O magnetite | −12.26 ± 0.26 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [64] | Brown and Ekberg, 2016 [29] |
---|---|---|
La3+ + H2O ⇌ LaOH2+ + H+ | –8.5 | –8.89 ± 0.10 |
2 La3+ + 2 H2O ⇌ La2(OH)24+ + 2 H+ | ≤ –17.5 | –17.57 ± 0.20 |
3 La3+ + 5 H2O ⇌ La3(OH)54+ + 5 H+ | ≤ –38.3 | –37.8 ± 0.3 |
5 La3+ + 9 H2O ⇌ La5(OH)96+ + 9 H+ | –71.2 | |
La(OH)3(s) + 3 H+ ⇌ La3+ + 3 H2O | 20.3 | 19.72 ± 0.34 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [65] | NIST46 [4] | Powell et al, 2009 [66] | Brown and Ekberg, 2016 [29] | Cataldo et al., 2018 [67] |
---|---|---|---|---|---|
Pb2+ + H2O ⇌ PbOH+ + H+ | –7.71 | –7.6 | –7.46 ± 0.06 | –7.49 ± 0.13 | –6.47± 0.03 |
Pb2+ + 2 H2O ⇌ Pb(OH)2 + 2 H+ | –17.12 | –17.1 | –16.94 ± 0.09 | –16.99 ± 0.06 | –16.12 ± 0.01 |
Pb2+ + 3 H2O ⇌ Pb(OH)3- + 3 H+ | –28.06 | –28.1 | –28.03± 0.06 | –27.94 ± 0.21 | –28.4 ± 0.1 |
Pb2+ + 4 H2O ⇌ Pb(OH)42- + 4 H+ | –40.8 | ||||
2 Pb2+ + H2O ⇌ Pb2(OH)3+ + H+ | –6.36 | –6.4 | –7.28± 0.09 | –6.73 ± 0.31 | |
3 Pb2+ + 4 H2O ⇌ Pb3(OH)42+ + 4 H+ | –23.88 | –23.9 | –23.01 ± 0.07 | –23.43 ± 0.10 | |
3 Pb2+ + 5 H2O ⇌ Pb3(OH)5+ + 5 H+ | –31.11 ± 0.10 | ||||
4 Pb2+ + 4 H2O ⇌ Pb4(OH)44+ + 4 H+ | –20.88 | –20.9 | –20.57± 0.06 | –20.71 ± 0.18 | |
6 Pb2+ + 8 H2O ⇌ Pb6(OH)84+ + 8 H+ | –43.61 | –43.6 | –42.89± 0.07 | –43.27 ± 0.47 | |
PbO(s) + 2 H+ ⇌ Pb2+ + H2O | 12.62 (red) 12.90 (yellow) | ||||
PbO(s) +H2O ⇌ Pb2+ + 2 OH– | –15.28 (red) | -15.3 | –15.3 (red) –15.1 (yellow) | –15.37 ± 0.04 (red) –15.1 ± 0.08 (yellow) | |
Pb2O(OH)2(s) +H2O ⇌ 2 Pb2+ + 4 OH– | –14.9 | ||||
PbO(s) +H2O ⇌ Pb(OH)2 | –4.4 (red) –4.2 (yellow) | ||||
Pb2O(OH)2(s) +H2O ⇌ 2 Pb(OH)2 | –4.0 | ||||
PbO(s) + 2 H2O ⇌ Pb(OH)3– + H+ | –1.4 (red) –1.2 (yellow) | ||||
Pb2O(OH)2(s) + 2 H2O ⇌ 2 Pb(OH)3– + 2 H+ | –1.0 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Feitknecht and Schindler, 1963 [68] |
---|---|
β-PbO2 + 2 H2O ⇌ Pb4+ + 4 OH– | –64 |
β-PbO2 + 2 H2O + 2 OH– ⇌ Pb(OH)62– | –4.5 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [69] | Nordstrom et al., 1990 [17] | Brown and Ekberg, 2016 [70] |
---|---|---|---|
Li+ + H2O ⇌ LiOH + H+ | –13.64 | –13.64 | –13.84 ± 0.14 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [71] | Nordstrom et al., 1990 [17] | Brown and Ekberg, 2016 [72] |
---|---|---|---|
Mg2+ + H2O ⇌ MgOH+ + H+ | –11.44 | –11.44 | –11.70 ± 0.04 |
4 Mg2+ + 4 H2O ⇌ Mg4(OH)44+ + 4 H+ | –39.71 | ||
Mg(OH)2(cr) + 2 H+ ⇌ Mg2+ + 2 H2O | 16.84 | 16.84 | 17.11 ± 0.04 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Perrin et al., 1969 [73] | Baes and Mesmer, 1976 [74] | Nordstrom et al., 1990 [17] | Hummel et al., 2002 [45] | Brown and Ekberg, 2016 [75] |
---|---|---|---|---|---|
Mn2+ + H2O ⇌ MnOH+ + H+ | –10.59 | –10.59 | –10.59 | –10.59 | −10.58 ± 0.04 |
Mn2+ + 2 H2O ⇌ Mn(OH)2 + 2 H+ | –22.2 | −22.18 ± 0.20 | |||
Mn2+ + 3 H2O ⇌ Mn(OH)3– + 3 H+ | –34.8 | −34.34 ± 0.45 | |||
Mn2+ + 4 H2O ⇌ Mn(OH)42– + 4 H+ | –48.3 | −48.28 ± 0.40 | |||
2 Mn2+ + H2O ⇌ Mn2OH3+ + H+ | –10.56 | ||||
2 Mn2+ + 3 H2O ⇌ Mn2(OH)3+ + 6 H+ | –23.90 | ||||
Mn(OH)2(s) + 2 H+ ⇌ Mn2+ + 2 H2O | 15.2 | 15.2 | 15.2 | 15.19 ± 0.10 | |
MnO(s) + 2 H+ ⇌ Mn2+ + H2O | 17.94 ± 0.12 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016 [76] |
---|---|
Mn3+ + H2O ⇌ MnOH2+ + H+ | –11.70 ± 0.04 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [77] | Brown and Ekberg, 2016 [78] |
---|---|---|
Hg22+ + H2O ⇌ Hg2OH+ + H+ | −5.0a | −4.45 ± 0.10 |
(a) 0.5 M HClO4
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [79] | Powell et all, 2005 [80] | Brown and Ekberg, 2016 [76] |
---|---|---|---|
Hg2+ + H2O ⇌ HgOH+ + H+ | −3.40 | –3.40 ± 0.08 | –3.40 ± 0.08 |
Hg2+ + 2 H2O ⇌ Hg(OH)2 + 2 H+ | -6.17 | –5.98 ± 0.06 | −5.96 ± 0.07 |
Hg2+ + 3 H2O ⇌ Hg(OH)3– + 3 H+ | –21.1 | –21.1 ± 0.3 | |
HgO(s) + 2 H+ ⇌ Hg2+ + H2O | 2.56 | 2.37 ± 0.08 | 2.37 ± 0.08 |
Hydrolysis constants (log values) in critical compilations at infinite dilution, T = 298.15 K and I = 3 M NaClO4 (a) or 0.1 M Na+ medium, Data at I = 0 are not available (b):
Reaction | Baes and Mesmer, 1976 [81] | Jolivet, 2000 [82] | NIST46 [4] | Crea et al., 2017 [83] |
---|---|---|---|---|
MoO42– + H+ ⇌ HMoO4– | 3.89a | 4.24 | 4.47 ± 0.02 | |
MoO42– + 2 H+ ⇌ H2MoO4 | 7.50a | 8.12 ± 0.03 | ||
HMoO4– + H+ ⇌ H2MoO4 | 4.0 | |||
Mo7O246– + H+ ⇌ HMo7O245– | 4.4 | |||
HMo7O245– + H+ ⇌ H2Mo7O244– | 3.5 | |||
H2Mo7O244– + H+ ⇌ H3Mo7O243– | 2.5 | |||
7 MoO42-+ 8 H+ ⇌ Mo7O246– + 4 H2O | 57.74a | 52.99b | 51.93 ± 0.04 | |
7 MoO42– + 9 H+ ⇌ Mo7O23(OH)5– + 4 H2O | 62.14a | 58.90 ± 0.02 | ||
7 MoO42– + 10 H+ ⇌ Mo7O22(OH)24– + 4 H2O | 65.68a | 64.63 ± 0.05 | ||
7 MoO42– + 11 H+ ⇌ Mo7O21(OH)33– + 4 H2O | 68.21a | 68.68 ± 0.06 | ||
19 MoO42- + 34 H+ ⇌ Mo19O594– + 17 H2O | 196.3a | 196a | ||
MoO3(s) + H2O ⇌ MoO42– + 2 H+ | –12.06a |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | NIST46 [4] | Neck et al., 2009 [84] | Brown and Ekberg, 2016 [29] |
---|---|---|---|---|
Nd3+ + H2O ⇌ NdOH2+ + H+ | –8.0 | –8.0 | –7.4 ± 0.4 | –8.13 ± 0.05 |
Nd3+ + 2 H2O ⇌ Nd(OH)2+ + 2 H+ | (–16.9) | –15.7 ± 0.7 | ||
Nd3+ + 3 H2O ⇌ Nd(OH)3(aq) + 3 H+ | (–26.5) | –26.2 ± 0.5 | ||
Nd3+ + 4 H2O ⇌ Nd(OH)4− + 4 H+ | (–37.1) | –37.4 | –40.7 ± 0.7 | |
2 Nd3+ + 2 H2O ⇌ Nd2(OH)24+ + 2 H+ | –13.86 | –13.9 | –15.56 ± 0.20 | |
3 Nd3+ + 5 H2O ⇌ Nd3(OH)54+ + 5 H+ | < –28.5 | –34.2 ± 0.3 | ||
Nd(OH)3(s) + 3 H+ ⇌ Nd3+ + 3 H2O | 18.6 | 17.2 ± 0.4 | 17.89 ± 0.09 | |
Nd(OH)3(s) ⇌ Nd3+ + 3 OH– | –23.2 ± 0.9 | –21.5 (act) –23.1(inact) |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016 [85] | Grenthe et al, 2020 [6] |
---|---|---|
Np3+ + H2O ⇌ NpOH2+ + H+ | -7.3 ± 0.5 | –6.8 ± 0.3 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [86] | NIST46 [4] | Brown and Ekberg, 2016 [87] | Grenthe et al, 2020 [6] |
---|---|---|---|---|
Np4+ + H2O ⇌ NpOH3+ + H+ | –1.49 | –1.5 | –1.31 ± 0.05 | 0.5 ± 0.2 |
Np4+ + 2 H2O ⇌ Np(OH)22+ + 2 H+ | –3.7 ± 0.3 | 0.3 ± 0.3 | ||
Np4+ + 4 H2O ⇌ Np(OH)4 + 4 H+ | –10.0 ± 0.9 | –8 ± 1 | ||
Np4+ + 4 OH- ⇌ NpO2(am, hyd) + 2 H2O | 52 | 54.9 ± 0.4 | 57.5 ± 0.3 | 56.7 ± 0.5 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [86] | Brown and Ekberg, 2016 [88] | Grenthe et al, 2020 [6] |
---|---|---|---|
NpO2+ + + H2O ⇌ NpO2(OH) + H+ | –8.85 | –10.7 ± 0.5 | –11.3 ± 0.7 |
NpO2+ + 2 H2O ⇌ NpO2(OH)2- + 2 H+ | –22.8 ± 0.7 | –23.6 ± 0.5 | |
NpO2+ + H2O ⇌ NpO2(OH)(am, fresh) + H+ | ≤ –4.7 | –5.21 ± 0.05 | –5.3 ± 0.2 |
NpO2+ + H2O ⇌ NpO2(OH)(am, aged) + H+ | –4.53 ± 0.06 | –4.7 ± 0.5 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [89] | NIST46 [4] | Brown and Ekberg, 2016 [90] | Grenthe et al, 2020 [6] |
---|---|---|---|---|
NpO22+ + H2O ⇌ NpO2(OH)+ + H+ | –5.15 | –5.12 | –5.1 ± 0.2 | –5.1 ± 0.4 |
NpO22+ + 3 H2O ⇌ NpO2(OH)3- + 3 H+ | –21 ± 1 | |||
NpO22+ + 4 H2O ⇌ NpO2(OH)42- + 4 H+ | –32 ± 1 | |||
2 NpO22+ + 2 H2O ⇌ (NpO2)2(OH)22+ + 2 H+ | –6.39 | –6.39 | –6.2 ± 0.2 | –6.2 ± 0.2 |
3 NpO22+ + 5 H2O ⇌ (NpO2)3(OH)5+ + 5 H+ | –17.49 | –17.49 | –17.0 ± 0.2 | –17.1 ± 0.2 |
NpO22+ + 2 H2O ⇌ NpO3.H2O(cr) + 2 H+ | ≥-6.6 | –5.4 ± 0.4 | –5.4 ± 0.4 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Feitknecht and Schindler, 1963 [68] | Baes and Messmer, 1976 [91] | NIST46 [4] | Gamsjäger et al., 2005 [92] | Thoenen et al., 2014 [93] | Brown and Ekberg, 2016 [94] |
---|---|---|---|---|---|---|
Ni2+ + H2O ⇌ NiOH+ + H+ | –9.86 | –9.9 | –9.54 ± 0.14 | –9.54 ± 0.14 | –9.90 ± 0.03 | |
Ni2+ + 2 H2O ⇌ Ni(OH)2 + 2 H+ | –19 | –19 | < –18 | –21.15 ± 0.0 | ||
Ni2+ + 3 H2O ⇌ Ni(OH)3– + 3 H+ | –30 | –30 | –29.2 ± 1.7 | –29.2 ± 1.7 | ||
Ni2+ + 4 H2O ⇌ Ni(OH)42– + 4 H+ | < –44 | |||||
2 Ni2+ + H2O ⇌ Ni2(OH)3+ + H+ | –10.7 | –10.6 ± 1.0 | –10.6 ± 1.0 | –10.6 ± 1.0 | ||
4 Ni2+ + 4 H2O ⇌ Ni4(OH)44+ + 4 H+ | –27.74 | –27.7 | –27.52 ± 0.15 | –27.52 ± 0.15 | –27.9 ± 0.6 | |
β-Ni(OH)2(s) + 2 H+ ⇌ Ni2+ + 2 H2O | 10.8 | 11.02 ± 0.20 | 10.96 ± 0.20 11.75 ± 0.13 (microcr) | |||
Ni(OH)2(s) ⇌ Ni2+ + 2 OH– | –17.2 (inactive) | –17.2 | –16.97± 0.20 (β) –17.2 ± 1.3 (cr) | |||
Ni(OH)2(s) + OH– ⇌ Ni(OH)3– | –4.2 (inactive) | |||||
NiO(cr) + 2 H+ ⇌ Ni2+ + H2O | 12.38 ± 0.06 | 12.48 ± 0.15 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [69] | Filella and May, 2020 [95] |
---|---|---|
Nb(OH)5 + H+ ⇌ Nb(OH)4+ + H2O | ~ –0.6 | 1.603 |
Nb(OH)5 + H2O ⇌ Nb(OH)6– + H+ | ~ –4.8 | –4.951 |
Nb6O198– + H+ ⇌ HNb6O197– | 14.95 | |
HNb6O197– + H+ ⇌ H2Nb6O196– | 13.23 | |
H2Nb6O196– + H+ ⇌ H3Nb6O195– | 11.73 | |
1/2 Nb2O5(act) + 5/2 H2O ⇌ Nb(OH)5 | ~ –7.4 | |
Nb(OH)5(am,s) ⇌ Nb(OH)5 | –7.510 | |
Nb2O5(s) + 5 H2O ⇌ 2 Nb(OH)5 | –18.31 |
Hydrolysis constants (log values) in critical compilations at infinite dilution, I = 0.1 M and T = 298.15 K:
Reaction | Galbács et al., 1983 [96] |
---|---|
OsO2(OH)42– + H+ ⇌ HOsO2(OH)4– | 10.4 |
HOsO2(OH)4– + H+ ⇌ H2OsO2(OH)4 | 8.5 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Galbács et al., 1983 [96] |
---|---|
OsO2(OH)3(O-)aq + H+ ⇌ OsO2(OH)4aq | 12.2a |
OsO2(OH)2(O-)2aq + H+ ⇌ OsO2(OH)3(O-)aq | 14.4b |
(a) At I = 0.1 M (b) At I = 2.5 M
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Perrin et al., 1969 [97] | Hummel et al., 2002 [45] | Kitamura and Yul, 2010 [98] | Brown and Ekberg, 2016 [99] |
---|---|---|---|---|
Pd2+ + H2O ⇌ PdOH+ + H+ | −0.96 | −0.65 ± 0.64 | −1.16 ± 0.30 | |
Pd2+ + 2 H2O ⇌ Pd(OH)2 + 2 H+ | −2.6 | −4 ± 1 | −3.11 ± 0.63 | −3.07 ± 0.16 |
Pd2+ + 3 H2O ⇌ Pd(OH)3− + 3 H+ | −15.5 ± 1 | −14.20 ± 0.63 | ||
Pd(OH)2(am) + 2 H+ ⇌ Pd2+ + 2 H2O | −3.3 ± 1 | −3.4 ± 0.2 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [100] | NIST46 [4] | Brown and Ekberg, 2016 [101] | Grenthe et al, 2020 [6] |
---|---|---|---|---|
Pu3+ + H2O ⇌ PuOH2+ + H+ | –7.0 | –6.9 ± 0.2 | –6.9 ± 0.3 | |
Pu3+ + 3 H2O ⇌ Pu(OH)3(cr) + 3 H+ | –19.65 | –15.8 ± 0.8 | –15 ± 1 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [102] | NIST46 [4] | Brown and Ekberg, 2016 [103] | Grenthe et al, 2020 [6] |
---|---|---|---|---|
Pu4+ + H2O ⇌ PuOH 3+ + H+ | –0.5 | –0.5 | –0.7 ± 0.1 | 0.6 ± 0.2 |
Pu4+ + 2 H2O ⇌ Pu(OH)22+ + 2 H+ | (–2.3) | 0.6 ± 0.3 | ||
Pu4+ + 3 H2O ⇌ Pu(OH)3+ + 3 H+ | (–5.3) | –2.3 ± 0.4 | ||
Pu4+ + 4 H2O ⇌ Pu(OH)4 + 4 H+ | –9.5 | –12.5 ± 0.7 | –8.5 ± 0.5 | |
Pu4+ + 4 OH- ⇌ PuO2(am, hyd) + 2 H2O | 49.5 | 47.9 ± 0.4 (0w) 53.8 ± 0.5 (1w) | 58.3 ± 0.5 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [104] | NIST46 [4] | Brown and Ekberg, 2016 [105] | Grenthe et al, 2020 [6] |
---|---|---|---|---|
PuO2+ + H2O ⇌ PuO2(OH) + H+ | –1.49 | –1.5 | –1.31 ± 0.05 | 0.5 ± 0.2 |
PuO2+ + H2O ⇌ PuO2(OH)(am) + H+ | –3.7 ± 0.3 | 0.3 ± 0.3 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [106] | NIST46 [4] | Brown and Ekberg, 2016 [107] | Grenthe et al, 2020 [6] |
---|---|---|---|---|
PuO22+ + H2O ⇌ PuO2(OH)+ + H+ | –5.6 | –5.6 | –5.36 ± 0.09 | –5.5 ± 0.5 |
PuO22+ + 2 H2O ⇌ PuO2(OH)2 + 2 H+ | –12.9 ± 0.2 | –13 ± 1 | ||
PuO22+ + 3 H2O ⇌ PuO2(OH)3- + 3 H+ | –24 ± 1 | |||
2 PuO22+ + 2 H2O ⇌ (PuO2)2(OH)22+ + 2 H+ | –8.36 | –8.36 | –7.8 ± 0.5 | –7 ± 1 |
3 PuO22+ + 5 H2O ⇌ (PuO2)3(OH)5+ + 5 H+ | –21.65 | –21.65 | ||
PuO22+ + 2 OH- ⇌ PuO2(OH)2(am, hyd) | 22.8 ± 0.6 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [69] | Nordstrom et al., 1990 [17] | Brown and Ekberg, 2016 [108] |
---|---|---|---|
K+ + H2O ⇌ KOH + H+ | –14.46 | –14.46 | –14.5 ± 0.4 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | NIST46 [4] | Brown and Ekberg, 2016 [29] |
---|---|---|---|
Pr3+ + H2O ⇌ PrOH2+ + H+ | –8.1 | –8.30 ± 0.03 | |
2 Pr3+ + 2 H2O ⇌ Pr2(OH)24+ + 2 H+ | –16.31 ± 0.20 | ||
3 Pr3+ + 5 H2O ⇌ Pr3(OH)54+ + 5 H+ | –35.0 ± 0.3 | ||
Pr(OH)3(s) + 3 H+ ⇌ Pr3+ + 3 H2O | 19.5 | 18.57 ± 0.20 | |
Pr(OH)3(s) ⇌ Pr3+ + 3 OH– | –22.3 ± 1.0 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Nordstrom et al., 1990 [17] |
---|---|
Ra2+ + H2O ⇌ RaOH+ + H+ | –13.49 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Perrin et al., 1969 [109] | Baes and Mesmer, 1976 [110] | Brown and Ekberg [111] |
---|---|---|---|
Rh3+ + H2O ⇌ RhOH2+ + H+ | ‒3.43 | ‒3.4 | ‒3.09 ± 0.1 |
Rh(OH)3(c) + OH‒ ⇌ Rh(OH)4‒ | ‒3.9 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | NIST46 [4] | Brown and Ekberg [29] |
---|---|---|---|
Sm3+ + H2O ⇌ SmOH2+ + H+ | –7.9 | –7.9 | –7.84 ± 0.11 |
2 Sm3+ + 2 H2O ⇌ Sm2(OH)24+ + 2 H+ | –14.75 ± 0.20 | ||
3 Sm3+ + 5 H2O ⇌ Sm3(OH)54+ + 5 H+ | –33.9 ± 0.3 | ||
Sm(OH)3(s) + 3H+ ⇌ Sm3+ + 3H2O | 16.5 | 17.19 ± 0.30 | |
Sm(OH)3(s) ⇌ Sm3+ + 3 OH- | –23.9 ± 0.9 (am) –25.9 (cr) |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [112] | Brown and Ekberg, 2016 [113] |
---|---|---|
Sc3+ + H2O ⇌ ScOH2+ + H+ | –4.3 | –4.16 ± 0.05 |
Sc3+ + 2 H2O ⇌ Sc(OH)2+ + 2 H+ | –9.7 | –9.71 ± 0.30 |
Sc3+ + 3 H2O ⇌ Sc(OH)3 + 3 H+ | –16.1 | –16.08 ± 0.30 |
Sc3+ + 4 H2O ⇌ Sc(OH)4–+ 4 H+ | –26 | –26.7 ± 0.3 |
2 Sc3+ + 2 H2O ⇌ Sc2(OH)24+ + 2 H+ | –6.0 | –6.02 ± 0.10 |
3 Sc3+ + 5 H2O ⇌ Sc3(OH)54+ + 5 H+ | –16.34 | –16.33 ± 0.10 |
Sc(OH)3(s) + 3 H+ ⇌ Sc3+ + 3 H2O | 9.17 ± 0.30 | |
ScO1.5(s) + 3 H+ ⇌ Sc3+ + 1.5 H2O | 5.53 ± 0.30 | |
ScO(OH)(c) + 3 H+ ⇌ Sc3+ + 2 H2O | 9.4 | |
Sc(OH)3(c) + OH– ⇌ Sc(OH)4 | –3.5 ± 0.2 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Olin et al., 2015 [114] | Thoenen et al., 2014 [93] |
---|---|---|
H2Se(g) ⇌ H2Se(aq) | –1.10 ± 0.01 | –1.10 ± 0.01 |
H2Se ⇌ HSe– + H+ | –3.85 ± 0.05 | –3.85 ± 0.05 |
HSe– ⇌ Se2– + H+ | –14.91 ± 0.20 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [115] | Olin et al., 2005 [114] | Thoenen et al., 2014 [93] |
---|---|---|---|
SeO32– + H+ ⇌ HSeO3– | 8.50 | 8.36 ± 0.23 | 8.36 ± 0.23 |
HSeO3– + H+ ⇌ H2SeO3 | 2.75 | 2.64 ± 0.14 | 2.64 ± 0.14 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [116] | Olin et al., 2005 [114] | Thoenen et al., 2014 [93] |
---|---|---|---|
SeO42‒ + H+ ⇌ HSeO4‒ | 1.360 | 1.75 ± 0.10 | 1.75 ± 0.10 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [117] | Thoenen et al., 2014 [93] |
---|---|---|
Si(OH)4 ⇌ SiO(OH)3– + H+ | –9.86 | –9.81 ± 0.02 |
Si(OH)4 ⇌ SiO2(OH)22– + 2 H+ | –22.92 | –23.14 ± 0.09 |
4 Si(OH)4 ⇌ Si4O6(OH)64– + 2 H+ + 4 H2O | –13.44 | |
4 Si(OH)4 ⇌ Si4O8(OH)44– + 4 H+ + 4 H2O | –35.80 | –36.3 ± 0.2 |
SiO2(quartz) + 2 H2O ⇌ Si(OH)4 | –4.0 | –3.739 ± 0.087 |
SiO2(am) + 2 H2O ⇌ Si(OH)4 | –2.714 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [118] | Brown and Ekberg, 2016 [119] |
---|---|---|
Ag+ + H2O ⇌ AgOH + H+ | −12.0 | −11.75 ± 0.14 |
Ag+ + 2 H2O ⇌ Ag(OH)2− + 2 H+ | −24.0 | −24.34 ± 0.14 |
0.5 Ag2O(am) + H+ ⇌ Ag+ + 0.5 H2O | 6.29 | 6.27 ± 0.05 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [69] | Nordstrom et al., 1990 [17] | Brown and Ekberg, 2016 [120] |
---|---|---|---|
Na+ + H2O ⇌ NaOH + H+ | –14.18 | –14.18 | –14.4 ± 0.2 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [16] | Nordstrom et al., 1990 [17] | Brown and Ekberg, 2016 [121] |
---|---|---|---|
Sr2+ + H2O ⇌ SrOH+ + H+ | –13.29 | –13.29 | –13.15 ± 0.05 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [122] | Filella and May, 2019a [123] |
---|---|---|
Ta(OH)5 + H+ ⇌ Ta(OH)4+ + H2O | ~1 | 0.7007 |
Ta(OH)5 + H2O ⇌ Ta(OH)6– + H+ | ~ –9.6 | |
Ta6O198– + H+ ⇌ HTa6O197– | 16.35 | |
HTa6O197– + H+ ⇌ H2Ta6O196– | 14.00 | |
1/2 Ta2O5(act) + 5/2 H2O ⇌ Ta(OH)5 | ~ –5.2 | |
Ta(OH)5(s) ⇌ Ta(OH)5 | –5.295 | |
Ta2O5(s) + 5 H2O ⇌ 2 Ta(OH)5 | –20.00 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Filella and May, 2019a [124] |
---|---|
Te2‒ + H+ ⇌ HTe‒ | 11.81 |
HTe‒ + H+ ⇌ H2Te | 2.476 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [125] | Filella and May, 2019a [124] |
---|---|---|
TeO32‒ + H+ ⇌ HTeO3‒ | 9.928 | |
HTeO3‒ + H+ ⇌ H2TeO3 | 6.445 | |
H2TeO3 ⇌ HTeO3‒ + H+ | ‒2.68 | |
H2TeO3 ⇌ TeO32‒ + 2 H+ | ‒12.5 | |
H2TeO3 + H+ ⇌ Te(OH)3+ | 3.13 | 2.415 |
TeO2(s) + H2O ⇌ H2TeO3 | ‒4.709 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [125] | Filella and May, 2019a [124] |
---|---|---|
TeO2(OH)42‒ + H+ ⇌ TeO(OH)5‒ | 10.83 | |
TeO(OH)5‒ + H+ ⇌ Te(OH)6 | 7.68 | 7.696 |
TeO2(OH)42‒ + 2 H+ ⇌ Te(OH)6 | 18.68 | |
TeO3(OH)33‒ + 3 H+ ⇌ Te(OH)6 | 34.3 | |
2 Te(OH)6 ⇌ Te2O(OH)11‒ + H+ | ‒6.929 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | Brown and Ekberg, 2016 [126] |
---|---|---|
Tb3+ + H2O ⇌ TbOH2+ + H+ | −7.9 | −7.60 ± 0.09 |
2 Tb3+ + 2 H2O ⇌ Tb2(OH)24+ + 2 H+ | −13.9 ± 0.2 | |
3 Tb3+ + 5 H2O ⇌ Tb3(OH)54+ + 5 H+ | −31.7 ± 0.3 | |
Tb(OH)3(s) + 3 H+ ⇌ Tb3+ + 3 H2O | 16.5 | 16.33 ± 0.30 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [127] | Brown and Ekberg, 2016 [128] |
---|---|---|
Tl+ + H2O ⇌ TlOH + H+ | –13.21 | |
Tl+ + OH– ⇌ TlOH | 0.64 ± 0.05 | |
Tl+ + 2 OH– ⇌ Tl(OH)2– | –0.7 ± 0.7 | |
1/2 Tl2O(s) + H+ ⇌ Tl+ + 1/2 H2O | 13.55 ± 0.20 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [127] | Brown and Ekberg, 2016 [128] |
---|---|---|
Tl3+ + H2O ⇌ TlOH2+ + H+ | –0.62 | –0.22 ± 0.19 |
Tl3+ + 2 H2O ⇌ Tl(OH)2+ + 2 H+ | –1.57 | |
Tl3+ + 3 H2O ⇌ Tl(OH)3 + 3 H+ | –3.3 | |
Tl3+ + 4 H2O ⇌ Tl(OH)4– + 4 H+ | –15.0 | |
1/2 Tl2O3(s) + 3 H+ ⇌ Tl3+ + 3/2 H2O | –3.90 | –3.90 ± 0.10 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [129] | Rand et al., 2008 [130] | Thoenen et al, 014 [131] | Brown and Ekberg, 2016 [132] |
---|---|---|---|---|
Th4+ + H2O ⇌ ThOH3+ + H+ | –3.20 | –2.5 ± 0.5 | –2.5 ± 0.5 | –2.5 ± 0.5 |
Th4+ + 2 H2O ⇌ Th(OH)22+ + 2 H+ | –6.93 | –6.2 ± 0.5 | –6.2 ± 0.5 | –6.2 ± 0.5 |
Th4+ + 3 H2O ⇌ Th(OH)3+ + 3 H+ | < –11.7 | |||
Th4+ + 4 H2O ⇌ Th(OH)4 + 4 H+ | –15.9 | –17.4 ± 0.7 | –17.4 ± 0.7 | –17.4 ± 0.7 |
2Th4+ + 2 H2O ⇌ Th2(OH)26+ + 2 H+ | –6.14 | –5.9 ± 0.5 | –5.9 ± 0.5 | –5.9 ± 0.5 |
2Th4+ + 3 H2O ⇌ Th2(OH)35+ + 3 H+ | –6.8 ± 0.2 | –6.8 ± 0.2 | –6.8 ± 0.2 | |
4Th4+ + 8 H2O ⇌ Th4(OH)88+ + 8 H+ | –21.1 | –20.4 ± 0.4 | –20.4 ± 0.4 | –20.4 ± 0.4 |
4Th4+ + 12 H2O ⇌ Th4(OH)124+ + 12 H+ | –26.6 ± 0.2 | –26.6 ± 0.2 | –26.6 ± 0.2 | |
6Th4+ + 15 H2O(l) ⇌ Th6(OH)159+ + 15 H+ | –36.76 | –36.8 ± 1.5 | –36.8 ± 1.5 | –36.8 ± 1.5 |
6Th4+ + 14 H2O(l) ⇌ Th6(OH)1410+ + 14 H+ | –36.8 ± 1.2 | –36.8 ± 1.2 | –36.8 ± 1.2 | |
ThO2(c) + 4 H+ ⇌ Th4+ + 2 H2O | 6.3 | |||
ThO2(am) + 4 H+ ⇌ Th4+ + 2 H2O | 8.8 ± 1.0 | |||
ThO2(am,hyd,fresh) + 4 H+ ⇌ Th4+ + 2 H2O | 9.3 ± 0.9 | |||
ThO2(am,hyd,aged) + 4 H+ ⇌ Th4+ + 2 H2O | 8.5 ± 0.9 | |||
Th4+ + 4 OH- ⇌ ThO2(am,hyd,fresh) + 2 H2O | 46.7 ± 0.9 | |||
Th4+ + 4 OH- ⇌ ThO2(am,hyd,aged) + 2 H2O | 47.5 ± 0.9 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | Brown and Ekberg, 2016 [133] |
---|---|---|
Tm3+ + H2O ⇌ TmOH2+ + H+ | −7.7 | −7.34 ± 0.09 |
2 Tm3+ + 2 H2O ⇌ Tm2(OH)24+ + 2 H+ | −13.2 ± 0.2 | |
3 Tm3+ + 5 H2O ⇌ Tm3(OH)54+ + 5 H+ | −30.5 ± 0.3 | |
Tm(OH)3(s) + 3 H+ ⇌ Tm3+ + 3 H2O | 15.0 | 15.56 ± 0.40 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Feitknecht, 1963 [68] | Baes and Mesmer, 1976 [134] | Hummel et al., 2002 [45] | NIST46 [4] | Cigala et al, 2012 [135] | Gamsjäger et al, 2012 [136] | Brown and Ekberg, 2016 [137] |
---|---|---|---|---|---|---|---|
Sn2+ + H2O ⇌ SnOH+ + H+ | –3.40 | –3.8 ± 0.2 | –3.4 | –3.52 ± 0.05 | –3.53 ± 0.40 | –3.53 ± 0.40 | |
Sn2+ + 2 H2O ⇌ Sn(OH)2 + 2 H+ | –7.06 | –7.7 ± 0.2 | –7.1 | –6.26 ± 0.06 | –7.68 ± 0.40 | –7.68 ± 0.40 | |
Sn2+ + 3 H2O ⇌ Sn(OH)3– + 3 H+ | –16.61 | –17.5 ± 0.2 | –16.6 | –16.97 ± 0.17 | –17.00 ± 0.60 | –17.56 ± 0.40 | |
2 Sn2+ + 2 H2O ⇌ Sn2(OH)22+ + 2 H+ | –4.77 | –4.8 | –4.79 ± 0.05 | ||||
3 Sn2+ + 4 H2O ⇌ Sn3(OH)42+ + 4 H+ | –6.88 | –5.6 ± 1.6 | –6.88 | –5.88 ± 0.05 | –5.60 ± 0.47 | −5.60 ± 0.47 | |
Sn(OH)2(s) ⇌ Sn2+ + 2 OH– | –25.8 | –26.28 ± 0.08 | |||||
SnO(s) + 2 H+ ⇌ Sn2+ + H2O | 1.76 | 2.5± 0.5 | 1.60 ± 0.15 | ||||
SnO(s) + H2O ⇌ Sn2+ + 2 OH– | –26.2 | ||||||
SnO(s) + H2O ⇌ Sn(OH)2 | –5.3 | ||||||
SnO(s) + 2 H2O ⇌ Sn(OH)3– + H+ | –0.9 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Hummel et al., 2002 [45] | Gamsjäger et al, 2012 [136] | Brown and Ekberg, 2016 [137] |
---|---|---|---|
Sn4+ + 4 H2O ⇌ Sn(OH)4 + 4 H+ | 7.53 ± 0.12 | ||
Sn4+ + 5 H2O ⇌ Sn(OH)5– + 5 H+ | –1.07 ± 0.42 | ||
Sn4+ + 6 H2O ⇌ Sn(OH)62– + 6 H+ | –1.07 ± 0.42 | ||
Sn(OH)4 + H2O ⇌ Sn(OH)5– + H+ | –8.0 ± 0.3 | –8.60 ± 0.40 | |
Sn(OH)4 + 2 H2O ⇌ Sn(OH)62– + 2 H+ | –18.4 ± 0.3 | –18.67 ± 0.30 | |
SnO2(cr) + 2 H2O ⇌ Sn(OH)4 | –8.0 ± 0.2 | –8.06 ± 0.11 | |
SnO2(am) + 2 H2O ⇌ Sn(OH)4 | –7.3 ± 0.3 | –7.22 ± 0.08 | |
SnO2(s) + 4 H+ ⇌ Sn4+ + 2 H2O | –15.59 ± 0.04 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | NIST46 [4] |
---|---|
WO42– + H+ ⇌ HWO4– | 3.6 |
WO42– + 2 H+ ⇌ H2WO4 | 5.8 |
6 WO42– + 7 H+ ⇌ HW6O215– + 3 H2O | 63.83 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Perrin et al., 1969 [138] | Baes and Mesmer, 1976 [139] | Brown and Ekberg, 2016 [140] |
---|---|---|---|
Ti3+ + H2O ⇌ TiOH2+ + H+ | –1.29 | –2.2 | –1.65 ± 0.11 |
2 Ti3+ + 2 H2O ⇌ Ti2(OH)24+ + 2 H+ | –3.6 | –2.64 ± 0.10 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [139] | Brown and Ekberg, 2016 [140] |
---|---|---|
Ti(OH)22+ + H2O ⇌ Ti(OH)3+ + H+ | ⩽–2.3 | |
Ti(OH)22+ + 2 H2O ⇌ Ti(OH)4 + 2 H+ | –4.8 | |
TiO2+ + H2O ⇌ TiOOH+ + H+ | –2.48 ± 0.10 | |
TiO2+ + 2 H2O ⇌ TiO(OH)2 + 2 H+ | –5.49 ± 0.14 | |
TiO2+ + 3 H2O ⇌ TiO(OH)3– + 3 H+ | –17.4 ± 0.5 | |
TiO(OH)2 + H2O ⇌ TiO(OH)3– + H+ | –11.9 ±0.5 | |
TiO2(c) +2 H2O ⇌ Ti(OH)4 | ~ –4.8 | |
TiO2(s) + H+ ⇌ TiOOH+ | –6.06 ± 0.30 | |
TiO2(s) + H2O ⇌ TiO(OH)2 | –9.02 ± 0.02 | |
TiO2 x H2O ⇌ Ti(OH)22+[OH–] | ||
TiO2(s) + 4 H+ ⇌ Ti4+ + 2 H2O | –3.56 ± 0.10 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [141] | Thoenen et al., 2014 [142] | Brown and Ekberg, 2016 [143] | Grenthe et al., 2020 [6] |
---|---|---|---|---|
U4+ + H2O ⇌ UOH3+ + H+ | –0.65 | – 0.54 ± 0.06 | –0.58 ± 0.08 | – 0.54 ± 0.06 |
U4+ + 2 H2O ⇌ U(OH)22+ + 2 H+ | (–2.6) | –1.1 ± 1.0 | –1.4 ± 0.2 | –1.9 ± 0.2 |
U4+ + 3 H2O ⇌ U(OH)3+ + 3 H+ | (–5.8) | –4.7 ± 1.0 | –5.1 ± 0.3 | –5.2 ± 0.4 |
U4+ + 4 H2O ⇌ U(OH)4 + 4 H+ | (–10.3) | –10.0 ± 1.4 | –10.4 ± 0.5 | –10.0 ± 1.4 |
U4+ + 5 H2O ⇌ U(OH)5- + 5 H+ | –16.0 | |||
UO2(am, hyd) + 4 H+ ⇌ U4+ + 2 H2O | 1.5 ± 1.0 | |||
UO2(am,hyd) + 2 H2O ⇌ U4+ + 4 OH– | –54.500 ± 1.000 | –54.500 ± 1.000 | ||
UO2(c) + 4 H+ ⇌ U4+ + 2 H2O | –1.8 | |||
UO2(c) + 2 H2O ⇌ U4+ + 4 OH– | –60.860 ± 1.000 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [144] | Grenthe et al., 1992 [145] | NIST46 [4] | Brown and Ekberg, 2016 [146] | Grenthe et al., 2020 [6] |
---|---|---|---|---|---|
UO22+ + H2O ⇌ UO2(OH)+ + H+ | –5.8 | –5.2 ± 0.3 | –5.9 ± 0.1 | –5.13 ± 0.04 | –5.25 ± 0.24 |
UO22+ + 2 H2O ⇌ UO2(OH)2 + 2 H+ | ≤-10.3 | –12.15 ± 0.20 | –12.15 ± 0.07 | ||
UO22+ + 3 H2O ⇌ UO2(OH)3– + 3 H+ | –19.2 ± 0.4 | –20.25 ± 0.42 | –20.25 ± 0.42 | ||
UO22+ + 4 H2O ⇌ UO2(OH)42– + 4 H+ | –33 ± 2 | –32.40 ± 0.68 | –32.40 ± 0.68 | ||
2 UO22+ + 2 H2O ⇌ (UO2)2(OH)22+ + 2 H+ | –5.62 | –5.62 ± 0.04 | –5.58 ± 0.04 | –5.68 ± 0.05 | –5.62 ± 0.08 |
3 UO22+ + 5 H2O ⇌ (UO2)3(OH)5+ + 5 H+ | –15.63 | –15.55 ± 0.12 | –15.6 | –15.75 ± 0.12 | –15.55 ± 0.12 |
3 UO22+ + 4 H2O ⇌ (UO2)3(OH)42+ + 4 H+ | (–11.75) | –11.9 ± 0.3 | –11.78 ± 0.05 | –11.9 ± 0.3 | |
3 UO22+ + 7 H2O ⇌ (UO2)3(OH)7– + 7 H+ | –31 ± 2.0 | –32.2 ± 0.8 | –32.2 ± 0.8 | ||
4 UO22+ + 7 H2O ⇌ (UO2)4(OH)7+ + 7 H+ | –21.9 ± 1.0 | –22.1 ± 0.2 | –21.9 ± 1.0 | ||
2 UO22+ + H2O ⇌ (UO2)2(OH)3+ + H+ | –2.7 ± 1.0 | –2.7 ± 1.0 | |||
UO2(OH)2(s) + 2H+ ⇌ UO22+ + 2 H2O | 5.6 | 6.0 | 4.81 ± 0.20 | ||
UO3·2H2O(cr) + 2H+ ⇌ UO22+ + 3 H2O | 5.350 ± 0.130 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016 [76] |
---|---|
VO2+ + H2O ⇌ VO(OH)+ + H+ | –5.30 ± 0.13 |
2 VO2+ + 2 H2O ⇌ (VO)2(OH)22+ + 2 H+ | –6.71 ± 0.10 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [147] | Brown and Ekberg, 2016 [148] |
---|---|---|
VO2+ + 2 H2O ⇌ VO(OH)3 + H+ | –3.3 | |
VO2+ + 2 H2O ⇌ VO2(OH)2– + 2 H+ | –7.3 | –7.18 ± 0.12 |
10 VO2+ + 8 H2O ⇌ V10O26(OH)24– + 14 H+ | –10.7 | |
VO2(OH)2– ⇌ VO3(OH)2– + H+ | –8.55 | |
2 VO2(OH)2– ⇌ V2O6(OH)23– + H+ + H2O | –6.53 | |
VO3(OH)2– ⇌ VO43– + H+ | –14.26 | |
2 VO3(OH)2– ⇌ V2O74– + H2O | 0.56 | |
3 VO3(OH)2– + 3 H+⇌ V3O93– + 3 H2O | 31.81 | |
V10O26(OH)24– ⇌ V10O27(OH)5– + 3 H+ | –3.6 | |
V10O27(OH)5– ⇌ V10O286– + H+ | –6.15 | |
VO2+ + H2O ⇌ VO2OH + H+ | –3.25 ± 0.1 | |
VO2+ + 3 H2O ⇌ VO2(OH)32- + 3 H+ | –15.74 ± 0.19 | |
VO2+ + 4 H2O ⇌ VO2(OH)43- + 4 H+ | –30.03 ± 0.24 | |
2 VO2+ + 4 H2O ⇌ (VO2)2(OH)42- + 4 H+ | –11.66 ± 0.53 | |
2 VO2+ + 5 H2O ⇌ (VO2)2(OH)53- + 5 H+ | –20.91 ± 0.22 | |
2 VO2+ + 6 H2O ⇌ (VO2)2(OH)64- + 6 H+ | –32.43 ± 0.30 | |
4 VO2+ + 8 H2O ⇌ (VO2)4(OH)84- + 8 H+ | –20.78 ± 0.33 | |
4 VO2+ + 9 H2O ⇌ (VO2)4(OH)95- + 9 H+ | –31.85 ± 0.26 | |
4 VO2+ + 10 H2O ⇌ (VO2)4(OH)106- + 10 H+ | –45.85 ± 0.26 | |
5 VO2+ + 10 H2O ⇌ (VO2)5(OH)105- + 10 H+ | –27.02 ± 0.34 | |
10 VO2+ + 14 H2O ⇌ (VO2)10(OH)144- + 14 H+ | –10.5 ± 0.3 | |
10 VO2+ + 15 H2O ⇌ (VO2)10(OH)155- + 15 H+ | –15.73 ± 0.33 | |
10 VO2+ + 16 H2O ⇌ (VO2)10(OH)166- + 16 H+ | –23.90 ± 0.35 | |
1/2 V2O5(c) + H+ ⇌ VO2+ + 1/2 H2O | –0.66 | |
V2O5(s) + 2 H+ ⇌ 2 VO2+ + H2O | –0.64 ± 0.09 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | Brown and Ekberg, 2016 [149] |
---|---|---|
Yb3+ + H2O ⇌ YbOH2+ + H+ | −7.7 | −7.31 ± 0.18 |
Yb3+ + 2 H2O ⇌ Yb(OH)2+ + 2 H+ | (−15.8) | |
Yb3+ + 3 H2O ⇌ Yb(OH)3 + 3 H+ | (−24.1) | |
Yb3+ + 4 H2O ⇌ Yb(OH)4− + 4 H+ | −32.7 | |
2 Yb3+ + 2 H2O ⇌ Yb2(OH)24+ + 2 H+ | −13.76 ± 0.20 | |
3 Yb3+ + 5 H2O ⇌ Yb3(OH)54+ + 5 H+ | −30.6 ± 0.3 | |
Yb(OH)3(s) + 3 H+ ⇌ Yb3+ + 3 H2O | 14.7 | 15.35 ± 0.20 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [28] | Brown and Ekberg, 2016 [29] |
---|---|---|
Y3+ + H2O ⇌ YOH2+ + H+ | –7.7 | –7.77 ± 0.06 |
Y3+ + 2 H2O ⇌ Y(OH)2+ + 2 H+ | (–16.4) [Estimation] | |
Y3+ + 3 H2O ⇌ Y(OH)3 + 3 H+ | (–26.0) [Estimation] | |
Y3+ + 4 H2O ⇌ Y(OH)4-+ 4 H+ | –36.5 | |
2 Y3+ + 2 H2O ⇌ Y2(OH)24+ + 2 H+ | –14.23 | –14.1 ± 0.2 |
3 Y3+ + 5 H2O ⇌ Y3(OH)54+ + 5 H+ | –31.6 | –32.7 ± 0.3 |
Y(OH)3(s) + 3 H+ ⇌ Y3+ + 3 H2O | 17.5 | 17.32 ± 0.30 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [150] | Powell and Brown, 2013 [151] | Brown and Ekberg, 2016 [152] |
---|---|---|---|
Zn2+ + H2O ⇌ ZnOH+ + H+ | −8.96 | −8.96 ± 0.05 | −8.94 ± 0.06 |
Zn2+ + 2 H2O ⇌ Zn(OH)2 + 2 H+ | −16.9 | –17.82 ± 0.08 | −17.89 ± 0.15 |
Zn2+ + 3 H2O ⇌ Zn(OH)3- + 3 H+ | −28.4 | –28.05 ± 0.05 | −27.98 ± 0.10 |
Zn2+ + 4 H2O ⇌ Zn(OH)42- + 4 H+ | −41.2 | –40.41 ± 0.12 | −40.35 ± 0.22 |
2 Zn2+ + H2O ⇌ Zn2OH3+ + H+ | −9.0 | –7.9 ± 0.2 | −7.89 ± 0.31 |
2 Zn2+ + 6 H2O ⇌ Zn2(OH)62- + 6 H+ | −57.8 | ||
ZnO(s) + 2 H+ ⇌ Zn2+ + H2O | 11.14 | 11.12 ± 0.05 | 11.11 ± 0.10 |
ε-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O | 11.38 ± 0.20 | 11.38± 0.20 | |
β1-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O | 11.72 ± 0.04 | ||
β2-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O | 11.76 ± 0.04 | ||
γ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O | 11.70 ± 0.04 | ||
δ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O | 11.81 ± 0.04 |
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976 [54] | Thoenen et al., 2014 [93] | Brown and Ekberg, 2016 [153] |
---|---|---|---|
Zr4+ + H2O ⇌ ZrOH3+ + H+ | 0.32 | 0.32 ± 0.22 | 0.12 ± 0.12 |
Zr4+ + 2 H2O ⇌ Zr(OH)22+ + 2 H+ | (−1.7)* | 0.98 ± 1.06* | −0.18 ± 0.17* |
Zr4+ + 3 H2O ⇌ Zr(OH)3+ + 3 H+ | (−5.1) | ||
Zr4+ + 4 H2O ⇌ Zr(OH)4 + 4 H+ | –9.7* | –2.19 ± 0.70* | −4.53 ± 0.37* |
Zr4+ + 5 H2O ⇌ Zr(OH)5– + 5 H+ | –16.0 | ||
Zr4+ + 6 H2O ⇌ Zr(OH)62– + 6 H+ | –29± 0.70 | –30.5 ± 0.3 | |
3 Zr4+ + 4 H2O ⇌ Zr3(OH)48+ + 4 H+ | –0.6 | 0.4 ± 0.3 | 0.90 ± 0.18 |
3 Zr4+ + 5 H2O ⇌ Zr3(OH)57+ + 5 H+ | 3.70 | ||
3 Zr4+ + 9 H2O ⇌ Zr3(OH)93+ + 9 H+ | 12.19 ± 0.20 | 12.19 ± 0.20 | |
4 Zr4+ + 8 H2O ⇌ Zr4(OH)88+ + 8 H+ | 6.0 | 6.52 ± 0.05 | 6.52 ± 0.05 |
4 Zr4+ + 15 H2O ⇌ Zr4(OH)15+ + 15 H+ | 12.58± 0.24 | ||
4 Zr4+ + 16 H2O ⇌ Zr4(OH)16 + 16 H+ | 8.39± 0.80 | ||
ZrO2(s) + 4 H+ ⇌ Zr4+ + 2 H2O | –1.9* | –5.37 ± 0.42* | |
ZrO2(s, baddeleyite) + 4 H+ ⇌ Zr4+ + 2 H2O | –7 ± 1.6 | ||
ZrO2(am) + 4 H+ ⇌ Zr4+ + 2 H2O | –3.24± 0.10 | –2.97 ± 0.18 |
*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. It is strongly suggested to refer to the original papers.
Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO• is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Both the hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.
Hydrolysis is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile.
In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are Lewis bases.
In chemistry, an acid dissociation constant is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction
Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.
A polyphosphate is a salt or ester of polymeric oxyanions formed from tetrahedral PO4 (phosphate) structural units linked together by sharing oxygen atoms. Polyphosphates can adopt linear or a cyclic (also called, ring) structures. In biology, the polyphosphate esters ADP and ATP are involved in energy storage. A variety of polyphosphates find application in mineral sequestration in municipal waters, generally being present at 1 to 5 ppm. GTP, CTP, and UTP are also nucleotides important in the protein synthesis, lipid synthesis, and carbohydrate metabolism, respectively. Polyphosphates are also used as food additives, marked E452.
A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous oxidation–reduction reactions. An example of a galvanic cell consists of two different metals, each immersed in separate beakers containing their respective metal ions in solution that are connected by a salt bridge or separated by a porous membrane.
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.
In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. Analogously, expressions involving gases can be adjusted for non-ideality by scaling partial pressures by a fugacity coefficient.
In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ionic solids. The size of the lattice energy is connected to many other physical properties including solubility, hardness, and volatility. Since it generally cannot be measured directly, the lattice energy is usually deduced from experimental data via the Born–Haber cycle.
The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration.
In coordination chemistry, a stability constant is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the interaction of a metal ion with a ligand and supramolecular complexes, such as host–guest complexes and complexes of anions. The stability constant(s) provide(s) the information required to calculate the concentration(s) of the complex(es) in solution. There are many areas of application in chemistry, biology and medicine.
Zinc compounds are chemical compounds containing the element zinc which is a member of the group 12 of the periodic table. The oxidation state of zinc in most compounds is the group oxidation state of +2. Zinc may be classified as a post-transition main group element with zinc(II). Zinc compounds are noteworthy for their nondescript appearance and behavior: they are generally colorless, do not readily engage in redox reactions, and generally adopt symmetrical structures.
Conductivity or specific conductance of an electrolyte solution is a measure of its ability to conduct electricity. The SI unit of conductivity is siemens per meter (S/m).
In theoretical chemistry, Specific ion Interaction Theory is a theory used to estimate single-ion activity coefficients in electrolyte solutions at relatively high concentrations. It does so by taking into consideration interaction coefficients between the various ions present in solution. Interaction coefficients are determined from equilibrium constant values obtained with solutions at various ionic strengths. The determination of SIT interaction coefficients also yields the value of the equilibrium constant at infinite dilution.
Equilibrium chemistry is concerned with systems in chemical equilibrium. The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero. This principle, applied to mixtures at equilibrium provides a definition of an equilibrium constant. Applications include acid–base, host–guest, metal–complex, solubility, partition, chromatography and redox equilibria.
In chemistry, metal aquo complexes are coordination compounds containing metal ions with only water as a ligand. These complexes are the predominant species in aqueous solutions of many metal salts, such as metal nitrates, sulfates, and perchlorates. They have the general stoichiometry [M(H2O)n]z+. Their behavior underpins many aspects of environmental, biological, and industrial chemistry. This article focuses on complexes where water is the only ligand, but of course many complexes are known to consist of a mix of aquo and other ligands.
A metal ion in aqueous solution or aqua ion is a cation, dissolved in water, of chemical formula [M(H2O)n]z+. The solvation number, n, determined by a variety of experimental methods is 4 for Li+ and Be2+ and 6 for most elements in periods 3 and 4 of the periodic table. Lanthanide and actinide aqua ions have higher solvation numbers (often 8 to 9), with the highest known being 11 for Ac3+. The strength of the bonds between the metal ion and water molecules in the primary solvation shell increases with the electrical charge, z, on the metal ion and decreases as its ionic radius, r, increases. Aqua ions are subject to hydrolysis. The logarithm of the first hydrolysis constant is proportional to z2/r for most aqua ions.
Reed McNeil Izatt was an American chemist who was emeritus Charles E. Maw Professor of Chemistry at Brigham Young University in Provo, Utah. His field of research was macrocyclic chemistry and metal separation technologies.
{{cite book}}
: CS1 maint: numeric names: authors list (link)