Reversible reaction

Last updated

A reversible reaction is a reaction in which the conversion of reactants to products and the conversion of products to reactants occur simultaneously. [1]

Contents

A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from a reversible process in thermodynamics.

Weak acids and bases undergo reversible reactions. For example, carbonic acid:

H2CO3 (l) + H2O(l) ⇌ HCO3(aq) + H3O+(aq).

The concentrations of reactants and products in an equilibrium mixture are determined by the analytical concentrations of the reagents (A and B or C and D) and the equilibrium constant, K. The magnitude of the equilibrium constant depends on the Gibbs free energy change for the reaction. [2] So, when the free energy change is large (more than about 30 kJ mol1), the equilibrium constant is large (log K > 3) and the concentrations of the reactants at equilibrium are very small. Such a reaction is sometimes considered to be an irreversible reaction, although small amounts of the reactants are still expected to be present in the reacting system. A truly irreversible chemical reaction is usually achieved when one of the products exits the reacting system, for example, as does carbon dioxide (volatile) in the reaction

CaCO3 + 2HCl → CaCl2 + H2O + CO2↑ + H2O

History

The concept of a reversible reaction was introduced by Claude Louis Berthollet in 1803, after he had observed the formation of sodium carbonate crystals at the edge of a salt lake [3] (one of the natron lakes in Egypt, in limestone):

2NaCl + CaCO3 → Na2CO3 + CaCl2

He recognized this as the reverse of the familiar reaction

Na2CO3 + CaCl2→ 2NaCl + CaCO3

Until then, chemical reactions were thought to always proceed in one direction. Berthollet reasoned that the excess of salt in the lake helped push the "reverse" reaction towards the formation of sodium carbonate. [4]

In 1864, Peter Waage and Cato Maximilian Guldberg formulated their law of mass action which quantified Berthollet's observation. Between 1884 and 1888, Le Chatelier and Braun formulated Le Chatelier's principle, which extended the same idea to a more general statement on the effects of factors other than concentration on the position of the equilibrium.

Reaction kinetics

For the reversible reaction A⇌B, the forward step A→B has a rate constant and the backwards step B→A has a rate constant . The concentration of A obeys the following differential equation:

.

 

 

 

 

(1)

If we consider that the concentration of product B at anytime is equal to the concentration of reactants at time zero minus the concentration of reactants at time , we can set up the following equation:

.

 

 

 

 

(2)

Combining 1 and 2 , we can write

.

Separation of variables is possible and using an initial value , we obtain:

and after some algebra we arrive at the final kinetic expression:

.

The concentration of A and B at infinite time has a behavior as follows:

Thus, the formula can be linearized in order to determine :

To find the individual constants and , the following formula is required:

See also

Related Research Articles

In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium.

In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and reverse reactions. This equation has a vast and important application in determining the rate of chemical reactions and for calculation of energy of activation. Arrhenius provided a physical justification and interpretation for the formula. Currently, it is best seen as an empirical relationship. It can be used to model the temperature variation of diffusion coefficients, population of crystal vacancies, creep rates, and many other thermally induced processes and reactions. The Eyring equation, developed in 1935, also expresses the relationship between rate and energy.

In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities of the chemical species undergoing reduction and oxidation respectively. It was named after Walther Nernst, a German physical chemist who formulated the equation.

In chemistry, a dynamic equilibrium exists once a reversible reaction occurs. Substances transition between the reactants and products at equal rates, meaning there is no net change. Reactants and products are formed at such a rate that the concentration of neither changes. It is a particular example of a system in a steady state.

<span class="mw-page-title-main">Gibbs free energy</span> Type of thermodynamic potential

In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure-volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed as

<span class="mw-page-title-main">Reaction rate</span> Speed at which a chemical reaction takes place

The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second. For most reactions, the rate decreases as the reaction proceeds. A reaction's rate can be determined by measuring the changes in concentration over time.

In chemistry, the law of mass action is the proposition that the rate of the chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. It explains and predicts behaviors of solutions in dynamic equilibrium. Specifically, it implies that for a chemical reaction mixture that is in equilibrium, the ratio between the concentration of reactants and products is constant.

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

In chemical thermodynamics, the reaction quotient (Qr or just Q) is a dimensionless quantity that provides a measurement of the relative amounts of products and reactants present in a reaction mixture for a reaction with well-defined overall stoichiometry, at a particular point in time. Mathematically, it is defined as the ratio of the activities (or molar concentrations) of the product species over those of the reactant species involved in the chemical reaction, taking stoichiometric coefficients of the reaction into account as exponents of the concentrations. In equilibrium, the reaction quotient is constant over time and is equal to the equilibrium constant.

In chemistry, the rate equation is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters only. For many reactions, the initial rate is given by a power law such as

In the physical sciences, relaxation usually means the return of a perturbed system into equilibrium. Each relaxation process can be categorized by a relaxation time τ. The simplest theoretical description of relaxation as function of time t is an exponential law exp(−t/τ).

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

<span class="mw-page-title-main">Tafel equation</span> Equation relating the rate of an electrochemical reaction to the overpotential

The Tafel equation is an equation in electrochemical kinetics relating the rate of an electrochemical reaction to the overpotential. The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification. The equation is named after Swiss chemist Julius Tafel.

" It describes how the electrical current through an electrode depends on the voltage difference between the electrode and the bulk electrolyte for a simple, unimolecular redox reaction ".

<span class="mw-page-title-main">Transition state theory</span> Theory describing the reaction rates of elementary chemical reactions

In chemistry, transition state theory (TST) explains the reaction rates of elementary chemical reactions. The theory assumes a special type of chemical equilibrium (quasi-equilibrium) between reactants and activated transition state complexes.

Equilibrium isotope fractionation is the partial separation of isotopes between two or more substances in chemical equilibrium. Equilibrium fractionation is strongest at low temperatures, and forms the basis of the most widely used isotopic paleothermometers : D/H and 18O/16O records from ice cores, and 18O/16O records from calcium carbonate. It is thus important for the construction of geologic temperature records. Isotopic fractionations attributed to equilibrium processes have been observed in many elements, from hydrogen (D/H) to uranium (238U/235U). In general, the light elements are most susceptible to fractionation, and their isotopes tend to be separated to a greater degree than heavier elements.

Diffusion-controlled reactions are reactions in which the reaction rate is equal to the rate of transport of the reactants through the reaction medium. The process of chemical reaction can be considered as involving the diffusion of reactants until they encounter each other in the right stoichiometry and form an activated complex which can form the product species. The observed rate of chemical reactions is, generally speaking, the rate of the slowest or "rate determining" step. In diffusion controlled reactions the formation of products from the activated complex is much faster than the diffusion of reactants and thus the rate is governed by collision frequency.

In electrochemistry, the Butler–Volmer equation, also known as Erdey-Grúz–Volmer equation, is one of the most fundamental relationships in electrochemical kinetics. It describes how the electrical current through an electrode depends on the voltage difference between the electrode and the bulk electrolyte for a simple, unimolecular redox reaction, considering that both a cathodic and an anodic reaction occur on the same electrode:

The rate of a chemical reaction is influenced by many different factors, such as temperature, pH, reactant, and product concentrations and other effectors. The degree to which these factors change the reaction rate is described by the elasticity coefficient. This coefficient is defined as follows:

<span class="mw-page-title-main">Langmuir adsorption model</span> Model describing the adsorption of a mono-layer of gas molecules on an ideal flat surface

The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes. This model even explains the effect of pressure i.e. at these conditions the adsorbate's partial pressure, , is related to the volume of it, V, adsorbed onto a solid adsorbent. The adsorbent, as indicated in the figure, is assumed to be an ideal solid surface composed of a series of distinct sites capable of binding the adsorbate. The adsorbate binding is treated as a chemical reaction between the adsorbate gaseous molecule and an empty sorption site, S. This reaction yields an adsorbed species with an associated equilibrium constant :

<span class="mw-page-title-main">Mass–action ratio</span> Definition of the mass-action ratio, as used in chemistry

The mass–action ratio, often denoted by , is the ratio of the product concentrations, p, to reactant concentrations, s. The concentrations may or may not be at equilibrium.

References

  1. "Reversible Reaction". lumenlearning.com. Retrieved 2021-01-08.
  2. at constant pressure.
  3. How did Napoleon Bonaparte help discover reversible reactions?. Chem1 General Chemistry Virtual Textbook: Chemical Equilibrium Introduction: reactions that go both ways.
  4. Claude-Louis Berthollet,"Essai de statique chimique", Paris, 1803. (Google books)