Humidity indicator card

Last updated

A humidity indicator card (HIC) is a card on which a moisture-sensitive chemical is impregnated such that it will change color when the indicated relative humidity (RH) is exceeded. This has usually been a blotting paper impregnated with cobalt(II) chloride base; Less toxic alternatives include other chemicals such as cobalt-free chloride base and special plastic films. [1]

Contents

Humidity indicators are an inexpensive way to indicate or quantify moisture content inside sealed packaging. They are available in many configurations and used in many applications, especially military and semiconductor. The most common humidity indicator cards change color from blue (less than indicated RH level) to pink (greater than indicated RH level).

History

The need for an easily read humidity indicator that could not be damaged by vibration was identified during World War II. Rear Admiral Welford C. Blinn, at that time the Commander of the USS Pope, became concerned about the poor condition of the weapons and ammunition arriving in the Pacific Theater. High humidity in the South Pacific, coupled with poor packaging methods, was causing corrosion and moisture damage. A significant amount of ordnance was arriving in an unstable, and sometimes dangerous, condition. Following the end of the war Rear Admiral Blinn was assigned to Washington, D.C., where he had the use of a research lab. There he developed the concept for the first color change humidity indicator, a simple Go/no go method of monitoring humidity.[ citation needed ]

In the late 1940s, Relative Humidity in the range of 30-35% was the concern because this is when corrosion can begin. For 50 years, industrial and military applications for color change humidity indicators were the primary market for these products. R. Admiral Blinn founded Humidial Corporation in 1948 Acquired by Süd-Chemie, Inc., in 1989 to commercialize humidity indicators, later acquired by Clariant

In the mid-1980s descendants of R. Admiral Blinn began working with manufacturers of semiconductors to identify and resolve the problem of “pop corning”. It was determined that the solder mounting of semiconductors, also known as devices, onto boards can cause "pop corning" of certain types of surface mount packages if they have been improperly stored or handled. This package delamination occurs as excessive moisture within the package expands as a result of the rapid thermal changes experienced during solder mount operations. As a result, an industry wide standard for packaging of semiconductors was released in 1989. This standard, EIA 583, called for the use of humidity indicator card that would indicate as low as 10%. Adherence to proper storage and handling methods immediately reduced the number of failures in the semiconductors, but over the years it became apparent that even humidity levels under 10% were detrimental to the devices. Once again, the Joint Electron Device Engineering Council (JEDEC), now the standards body for semiconductor packaging, went to the descendants of R. Admiral Blinn to determine the feasibility of making a 5% color change humidity indicator. In April 1999, J-STD-033 was released with a 5, 10, 15% color change indicator card specified.

Humidity indicator cards are also present on many small electronic devices, ranging from cellular phones to laptop computers, for the purpose of alerting the manufacturer that the device has been exposed to high levels of moisture. In many cases this voids or changes the terms of warranty coverage for the device. [2]

The previous United States Military Specification Mil-I-8835A [ permanent dead link ] was the governing specification for a humidity indicator card. The humidity indicator card is also specified for use in J-STD-033, which is the standard for handling, packing, shipping and use of moisture/reflow sensitive surface-mount devices. This is a joint standard developed by the Joint Electron Device Engineering Council and IPC and is used in semiconductor packaging.

Cobalt-free humidity indicator cards

Cobalt Free Humidity Indicator Card 6 Spot Humidity Indicator Card.jpg
Cobalt Free Humidity Indicator Card

Several cobalt-free systems have been developed. [3] Cobalt-free brown to light blue(copper(II) chloride base) HICs can be found on the market. In 1998, the European Community (EC) issued a directive which classifies items containing cobalt(II) chloride of 0.01 to 1% w/w as T (Toxic), with the corresponding R phrase of R49 (may cause cancer if inhaled). As a consequence, new cobalt-free humidity indicator cards have been developed by some companies.

Although the EC issued this directive, it did not ban humidity indicators that contain cobalt(II) chloride.[ citation needed ] The only effect the EC directive has on a humidity indicator card that contains cobalt(II) chloride is setting labeling requirement thresholds. There are two ways to consider the EC directive:[ original research? ]

  1. The cobalt based HIC producers says that if a humidity indicator is considered an article in the EC definition and therefore has no labeling requirements if the content of cobalt(II) chloride by weight is <0.25%. The T (toxic) and R49 (may cause cancer if inhaled) is not applicable because a humidity indicator cannot be inhaled.
  2. On the other hand, if you consider HIC as a chemical (indicating spot) on a paper card (indicator) the consequence is that it should be considered as a preparation, the concentration limit changes to 0.01% weight of cobalt(II) chloride, and it should be labeled as T (toxic) and R49 (may cause cancer if inhaled). Moreover, it is clear that the HIC can not be inhaled, but the regulation is about the content of substances and is a warning for users: e.g. if they know that there are harmful substances in the HIC, they will not dispose of them by burning.

HICs in semiconductor packaging

For semiconductor packaging, HICs are packed inside a moisture-sensitive bag, along with the desiccant, to aid in determining the level of moisture to which the moisture-sensitive devices have been subjected. Moisture sensitivity levels are indicated with a number as in the MSL list.

JEDEC is the leading developer of standards for the solid-state industry and sets the standards for semiconductor packaging. The latest JEDEC standard, the Joint Industry Standard for the “Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices” J-STD-033B, sets forth the use and testing of humidity indicator cards in the dry packaging of semiconductors. HICs are used to ensure that the humidity within dry packed barrier bags remains at safe levels for surface mount devices. In the past, HICs for the semiconductor industry have indicated relative humidity (RH) levels of 5, 10 and 15 percent. However, JEDEC and IPC released JSTD-033B in 2005, which requires the use of an HIC that indicates RH levels of 5, 10 and 60 percent.

The standard includes the use and testing of humidity indicator (HI) cards in the dry packaging of semiconductors. The methods outlined in the standard are prescribed by JEDEC and IPC to avoid damage—like cracks and delamination—from moisture absorption and exposure to solder reflow temperatures that can result in yield and reliability degradation.

The stipulations of J-STD-003B state:

  1. HICs must adhere to a standard, minimal color-change quality level to ensure accuracy and readability between dry and humid states: The Color Meter Test Method quantitatively determines the accuracy of color-change HICs. The levels, as outlined in the J-STD-033B revision, require a “significant, perceptible change in color” between noted humidity levels. Manufacturers are required to test their cards for accuracy using a colorimeter device and be required to provide a test report to the customer certifying that the HIC meets quality requirements.
  2. HICs must indicate humidity levels for MSL 2 Parts, in addition to MSL 2a to 5a: Whereas previous cards used a 5-, 10- and 15-percent relative-humidity spot system to indicate humidity exposure levels for moisture-sensitive components, the new HIC will now feature spots indicating 5, 10 and 60 percent. The change means that cards will now indicate humidity exposure for Level 2 MSL devices. Additionally, a positive reading on the 60-percent spot indicates that cards should not be re-used, as the high levels of humidity to which the card has been exposed will jeopardize the accuracy of low (5% RH) readings. The 5-, 10-, 60-percent cards are complaint with European Community Council Directive 67/548/EEC as long as they do not contain more than the applicable amount of cobalt chloride.

The full standard can be downloaded from JEDEC.

Irreversible maximum humidity indicator cards

Maximum humidity indicator cards are specially designed cards that monitor relative humidity levels in cargo applications. Each level of humidity is represented by a blue crystal that dissolves to create a large blue spot that clearly indicates the highest relative humidity level that has been reached. Maximum humidity indicator cards are irreversible, thus indicating the highest level of humidity experienced by cargo during its voyage, regardless of current (potentially lower) humidity levels. They provide a clear, unmistakable means of determining if goods have been exposed to damaging humidity levels during their journey. If the card indicates high levels of humidity, users know to check their products for possible damage or modify their packaging regimen accordingly. Several technologies are available. [4] [5]

See also

Related Research Articles

<span class="mw-page-title-main">Electrostatic discharge</span> Sudden flow of electric current between 2 electrically charged objects by contact

Electrostatic discharge (ESD) is a sudden and momentary flow of electric current between two electrically charged objects caused by contact, an electrical short or dielectric breakdown. A buildup of static electricity can be caused by tribocharging or by electrostatic induction. The ESD occurs when differently-charged objects are brought close together or when the dielectric between them breaks down, often creating a visible spark.

Hygroscopy is the phenomenon of attracting and holding water molecules via either absorption or adsorption from the surrounding environment, which is usually at normal or room temperature. If water molecules become suspended among the substance's molecules, adsorbing substances can become physically changed, e.g., changing in volume, boiling point, viscosity or some other physical characteristic or property of the substance. For example, a finely dispersed hygroscopic powder, such as a salt, may become clumpy over time due to collection of moisture from the surrounding environment.

<span class="mw-page-title-main">Silica gel</span> Chemical compound

Silica gel is an amorphous and porous form of silicon dioxide (silica), consisting of an irregular tridimensional framework of alternating silicon and oxygen atoms with nanometer-scale voids and pores. The voids may contain water or some other liquids, or may be filled by gas or vacuum. In the last case, the material is properly called silica xerogel.

<span class="mw-page-title-main">Hygrometer</span> Instrument for measuring humidity

A hygrometer is an instrument which measures the humidity of air or some other gas: that is, how much water vapor it contains. Humidity measurement instruments usually rely on measurements of some other quantities such as temperature, pressure, mass and mechanical or electrical changes in a substance as moisture is absorbed. By calibration and calculation, these measured quantities can lead to a measurement of humidity. Modern electronic devices use the temperature of condensation, or they sense changes in electrical capacitance or resistance to measure humidity differences. A crude hygrometer was invented by Leonardo da Vinci in 1480. Major leaps came forward during the 1600s; Francesco Folli invented a more practical version of the device, while Robert Hooke improved a number of meteorological devices including the hygrometer. A more modern version was created by Swiss polymath Johann Heinrich Lambert in 1755. Later, in the year 1783, Swiss physicist and Geologist Horace Bénédict de Saussure invented the first hygrometer using human hair to measure humidity.

<span class="mw-page-title-main">Desiccant</span> Substance used to induce or sustain dryness

A desiccant is a hygroscopic substance that is used to induce or sustain a state of dryness (desiccation) in its vicinity; it is the opposite of a humectant. Commonly encountered pre-packaged desiccants are solids that absorb water. Desiccants for specialized purposes may be in forms other than solid, and may work through other principles, such as chemical bonding of water molecules. They are commonly encountered in foods to retain crispness. Industrially, desiccants are widely used to control the level of water in gas streams.

<span class="mw-page-title-main">MultiMediaCard</span> Memory card format

The MultiMediaCard, officially abbreviated as MMC, is a memory card standard used for solid-state storage. Unveiled in 1997 by SanDisk and Siemens, MMC is based on a surface-contact low pin-count serial interface using a single memory stack substrate assembly, and is therefore much smaller than earlier systems based on high pin-count parallel interfaces using traditional surface-mount assembly such as CompactFlash. Both products were initially introduced using SanDisk NOR-based flash technology.

<span class="mw-page-title-main">Desiccation</span> State of extreme dryness or process of thorough drying

Desiccation is the state of extreme dryness, or the process of extreme drying. A desiccant is a hygroscopic substance that induces or sustains such a state in its local vicinity in a moderately sealed container.

<span class="mw-page-title-main">Desiccator</span> Sealable enclosures containing desiccants to preserve moisture-sensitive items

Desiccators are sealable enclosures containing desiccants used for preserving moisture-sensitive items such as cobalt chloride paper for another use. A common use for desiccators is to protect chemicals which are hygroscopic or which react with water from humidity.

A dry box is a storage container in which the interior is kept at a low level of humidity. It may be as simple as an airtight and watertight enclosure, or it may use active means to remove water vapor from the air trapped inside.

<span class="mw-page-title-main">Copper(II) chloride</span> Chemical compound

Copper(II) chloride, also known as cupric chloride, is an inorganic compound with the chemical formula CuCl2. The monoclinic yellowish-brown anhydrous form slowly absorbs moisture to form the orthorhombic blue-green dihydrate CuCl2·2H2O, with two water molecules of hydration. It is industrially produced for use as a co-catalyst in the Wacker process.

Moisture sensitivity level (MSL) is a rating that shows a device's susceptibility to damage due to absorbed moisture when subjected to reflow soldering as defined in J-STD-020. It relates to the packaging and handling precautions for some semiconductors. The MSL is an electronic standard for the time period in which a moisture sensitive device can be exposed to ambient room conditions.

<span class="mw-page-title-main">Human-body model</span>

The human-body model (HBM) is the most commonly used model for characterizing the susceptibility of an electronic device to damage from electrostatic discharge (ESD). The model is a simulation of the discharge which might occur when a human touches an electronic device.

Electronic packaging is the design and production of enclosures for electronic devices ranging from individual semiconductor devices up to complete systems such as a mainframe computer. Packaging of an electronic system must consider protection from mechanical damage, cooling, radio frequency noise emission and electrostatic discharge. Product safety standards may dictate particular features of a consumer product, for example, external case temperature or grounding of exposed metal parts. Prototypes and industrial equipment made in small quantities may use standardized commercially available enclosures such as card cages or prefabricated boxes. Mass-market consumer devices may have highly specialized packaging to increase consumer appeal. Electronic packaging is a major discipline within the field of mechanical engineering.

Moisture analysis covers a variety of methods for measuring the moisture content in solids, liquids, or gases. For example, moisture is a common specification in commercial food production. There are many applications where trace moisture measurements are necessary for manufacturing and process quality assurance. Trace moisture in solids must be known in processes involving plastics, pharmaceuticals and heat treatment. Fields that require moisture measurement in gasses or liquids include hydrocarbon processing, pure semiconductor gases, bulk pure or mixed gases, dielectric gases such as those in transformers and power plants, and natural gas pipeline transport. Moisture content measurements can be reported in multiple units, such as: parts per million, pounds of water per million standard cubic feet of gas, mass of water vapor per unit volume or mass of water vapor per unit mass of dry gas.

Universal Flash Storage (UFS) is a flash storage specification for digital cameras, mobile phones and consumer electronic devices. It was designed to bring higher data transfer speed and increased reliability to flash memory storage, while reducing market confusion and removing the need for different adapters for different types of cards. The standard encompasses both packages permanently attached (embedded) within a device (eUFS), and removable UFS memory cards.

Reliability of semiconductor devices can be summarized as follows:

  1. Semiconductor devices are very sensitive to impurities and particles. Therefore, to manufacture these devices it is necessary to manage many processes while accurately controlling the level of impurities and particles. The finished product quality depends upon the many layered relationship of each interacting substance in the semiconductor, including metallization, chip material and package.
  2. The problems of micro-processes, and thin films and must be fully understood as they apply to metallization and wire bonding. It is also necessary to analyze surface phenomena from the aspect of thin films.
  3. Due to the rapid advances in technology, many new devices are developed using new materials and processes, and design calendar time is limited due to non-recurring engineering constraints, plus time to market concerns. Consequently, it is not possible to base new designs on the reliability of existing devices.
  4. To achieve economy of scale, semiconductor products are manufactured in high volume. Furthermore, repair of finished semiconductor products is impractical. Therefore, incorporation of reliability at the design stage and reduction of variation in the production stage have become essential.
  5. Reliability of semiconductor devices may depend on assembly, use, environmental, and cooling conditions. Stress factors affecting device reliability include gas, dust, contamination, voltage, current density, temperature, humidity, mechanical stress, vibration, shock, radiation, pressure, and intensity of magnetic and electrical fields.

A semiconductor package is a metal, plastic, glass, or ceramic casing containing one or more discrete semiconductor devices or integrated circuits. Individual components are fabricated on semiconductor wafers before being diced into die, tested, and packaged. The package provides a means for connecting it to the external environment, such as printed circuit board, via leads such as lands, balls, or pins; and protection against threats such as mechanical impact, chemical contamination, and light exposure. Additionally, it helps dissipate heat produced by the device, with or without the aid of a heat spreader. There are thousands of package types in use. Some are defined by international, national, or industry standards, while others are particular to an individual manufacturer.

<span class="mw-page-title-main">TO-18</span>

In electronics, TO-18 is a designation for a style of transistor metal case. The case is more expensive than the similarly sized plastic TO-92 package. The name is from JEDEC, signifying Transistor Outline Package, Case Style 18.

<span class="mw-page-title-main">Failure of electronic components</span> Ways electronic components fail and prevention measures

Electronic components have a wide range of failure modes. These can be classified in various ways, such as by time or cause. Failures can be caused by excess temperature, excess current or voltage, ionizing radiation, mechanical shock, stress or impact, and many other causes. In semiconductor devices, problems in the device package may cause failures due to contamination, mechanical stress of the device, or open or short circuits.

<span class="mw-page-title-main">TO-8</span>

In electronics, TO-8 is a designation for a standardized metal semiconductor package. TO in TO-8 stands for "transistor outline" and refers to a series of technical drawings produced by JEDEC. The TO-8 package is noticeably larger than the more common TO-5 package. While originally designed for medium power transistors such as the 2N1483 series or the AD136, it is more commonly used for integrated circuits and sensors.

References

  1. Zhang, Y. P.; Chodavarapu, V. P.; Kirk, A. G.; Andrews, M. P. (2013). "Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films". Sensors and Actuators B: Chemical. 176: 692–697. doi:10.1016/j.snb.2012.09.100.
  2. Motorola Limited Warranty
  3. US 20150300958 A1,Evan Koon Lun Yuuji Hajime,"Adjustable colorimetric moisture indicators",published 2015
  4. US3898172A,Rief, Kurz,"Irreversible humidity indicator",published 1975
  5. US6698378B1,Dick, Robertson, Martin,"Irreversible humidity indicator cards",published 2000