Food and biological process engineering

Last updated

Food and biological process engineering is a discipline concerned with applying principles of engineering to the fields of food production and distribution and biology. It is a broad field, with workers fulfilling a variety of roles ranging from design of food processing equipment to genetic modification of organisms. [1] [2] In some respects it is a combined field, drawing from the disciplines of food science and biological engineering to improve the earth's food supply.

Contents

Creating, processing, and storing food to support the world's population requires extensive interdisciplinary knowledge. Notably, there are many biological engineering processes within food engineering to manipulate the multitude of organisms involved in our complex food chain. Food safety in particular requires biological study to understand the microorganisms involved and how they affect humans. However, other aspects of food engineering, such as food storage and processing, also require extensive biological knowledge of both the food and the microorganisms that inhabit it. This food microbiology and biology knowledge becomes biological engineering when systems and processes are created to maintain desirable food properties and microorganisms while providing mechanisms for eliminating the unfavorable or dangerous ones. [3]

Concepts

Many different concepts are involved in the field of food and biological process engineering. Below are listed several major ones.

Food science

The science behind food and food production involves studying how food behaves and how it can be improved. Researchers analyze longevity and composition (i.e., ingredients, vitamins, minerals, etc.) of foods, as well as how to ensure food safety. [4]

Genetic engineering


Modern food and biological process engineering relies heavily on applications of genetic manipulation. By understanding plants and animals on the molecular level, scientists are able to engineer them with specific goals in mind. [2]

Among the most notable applications of such genetic engineering is the creation of disease or insect resistant plants, such as those modified to produce Bacillus thuringiensis, a bacterium that kills strain-specific varieties of insect upon consumption. [5] However, insects are able to adapt to Bacillus thuringiensis strains, necessitating continued research to maintain disease-resistance.

Food safety

This figure illustrates the pathway of food preservation followed by lactic acid bacteria involving Nisin, as well as the pathway of food preservation followed by salt. Additionally, the hurdle effect of food preservation, such as by adding lactic acid bacteria and salt to a food product, is illustrated and described. Food Preservation by Lactic Acid Bacteria and Salt and The Hurdle Effect.png
This figure illustrates the pathway of food preservation followed by lactic acid bacteria involving Nisin, as well as the pathway of food preservation followed by salt. Additionally, the hurdle effect of food preservation, such as by adding lactic acid bacteria and salt to a food product, is illustrated and described.

An important task within the realm of food safety is the elimination of microorganisms responsible for food-borne illness. Food and waterborne diseases still pose a serious health concern, with hundreds of outbreaks reported per year since 1971 in the United States alone. [6] The risk of these diseases has risen throughout the years, mainly due to the mishandling of raw food, poor sanitation, and poor socioeconomic conditions. In addition to diseases caused by direct infection by pathogens, some food borne diseases are caused by the presence of toxins produced by microorganisms in food. There are five main types of microbial pathogens which contaminate food and water: viruses, bacteria, fungi, pathogenic protozoa and helminths. [7]

Several bacteria, such as E. coli, Clostridium botulinum, and Salmonella enterica, are well-known and are targeted for elimination via various industrial processes. Though bacteria are often the focus of food safety processes, viruses, protozoa, and molds are also known to cause food-borne illness and are of concern when designing processes to ensure food safety. Although the goal of food safety is to eliminate harmful organisms from food and prevent food-borne illness, detecting said organisms is another important function of food safety mechanisms. [8] [9]

Monitoring and detection

The goal of most monitoring and detection processes is the rapid detection of harmful microorganisms with minimal interruption to the processing of food products. An example of a detection mechanism that relies heavily on biological processes is usage of chromogenic microbiological media.

Chromogenic Microbiological Media

Chromogenic microbiological media use colored enzymes to detect the presence of certain bacteria. In conventional bacteria culturing, bacteria are allowed to grow on a medium that supports many strains. Since it is hard to isolate bacteria, many cultures of different bacteria are able to form. To identify a particular bacteria culture, scientists must identify it using only its physical characteristics. Then further tests can be performed to confirm the presence of the bacteria, such as serology tests that find antibodies formed in organisms as a response to infection. [10] In contrast, chromogenic microbiological media use particular color-producing enzymes that are targeted for metabolism by a certain strain of bacteria. Thus, if the given cultures are present, the media will become colored accordingly as the bacteria metabolize the color-producing enzyme. This greatly facilitates the identification of certain bacteria cultures and can eliminate need for further testing. To guard against misidentification of bacteria, the chromogenic plates typically incorporate additional enzymes that will be processed by other bacteria. Now, as the non-target bacteria interact with the additional enzymes, they will produce colors that distinguish them from the target bacteria. [10] [11]

Mechanisms

Food safety has been practiced for thousands of years, but with the rise of heavily industrial agriculture, the demand for food safety has steadily increased, prompting more research into the ways to achieve greater food safety. A primary mechanism that will be discussed in this article is heating of food products to kill microorganisms, as this has a millennia-long history and is still extensively used. However, more recent mechanisms have been created such as application of ultraviolet light, high pressure, electric field, cold plasma, usage of ozone, and irradiation of food. [12]

Heating

A report given to the Food and Drug Administration by the Institute of Food Technologists thoroughly discusses the thermal processing of food. [12] A notable step in development of heat application to food processing is pasteurization, developed by Louis Pasteur in the nineteenth century. Pasteurization is used to kill microorganisms that could pose risks to consumers or shorten the shelf life of food products. Primarily applied to liquid food products, pasteurization is regularly applied to fruit juice, beer, milk, and ice cream. Heat applied during pasteurization varies from around 60 °C to kill bacteria to around 80 °C to kill yeasts. Most pasteurization processes have been optimized recently to involve several steps of heating at various temperatures and minimize the time needed for the process. [13]

Basic drawing of an ammonia compressor. Ammonia compressors are used in many factories to cool food products. A discussion of the design of small ammonia compressors (1911) (14779836691).jpg
Basic drawing of an ammonia compressor. Ammonia compressors are used in many factories to cool food products.

A more severe food heating mechanism is thermal sterilization. While pasteurization destroys most bacteria and yeast growing in food products, the goal of sterilization is to kill almost all viable organisms found in food products including yeast, mold, bacteria, and spore forming organisms. Done properly, this process will greatly extend the shelf life of food products and can allow them to be stored at room temperature. As detailed in The Handbook of Food Preservation, thermal sterilization typically involves four steps. First, food products are heated to between 110 and 125 °C, and the products are given time for the heat to travel through the material completely. After this, the temperature must be maintained long enough to kill microorganisms before the food product is cooled to prevent cooking. In practice, though complete sterility of food products could be achieved, the intense and extended heating needed to accomplish this could reduce the nutritive value of the food products, thus, only a partial sterilization is performed. [14]

Low-Temperature Process

Low-temperature processing also plays an essential role in food processing and storage. During this process, microorganisms and enzymes are subjected to low temperatures. Unlike heating, chilling does not destroy the enzymes and microorganisms but simply reduces their activity, which is effective as long as the temperature is maintained. As the temperature is raised, activity will rise again accordingly. It follows that, unlike heating, the effect of preservation by cold is not permanent; hence the importance of maintaining the cold chain throughout the shelf life of the food product. [15]

It is important to note that there are two distinct low temperature processes: chilling and freezing. Chilling is the application of temperatures within the range of 0-8 °C, while freezing is usually below 18 °C. Refrigeration does slow spoilage in food and reduce the risk of bacterial growth, however, it does not improve the quality of the product.

Irradiation

Food irradiation is another notable biological engineering process to achieve food safety. Research into the potential utilization of ionizing irradiation for food preservation started in the 1940s as an extension of studies on the effect of radiation on living cells. [15] The FDA approved usage of ionizing radiation on food products in 1990. This radiation removes electrons from atoms, and these electrons go on to damage the DNA of microorganisms living in the food, killing the microorganisms. Irradiation can be used to pasteurize food products, such as seafood, poultry, and red meat, thus making these food products safer for consumers. [8] Some irradiation is also used to delay fruit ripening processes, which can kill microorganisms that accelerate the ripening and spoilage of produce. Low dosages of radiation can also be used to kill insects living in harvested crops, as the radiation will stunt the insects' development at various stages and damage their ability to reproduce. [16]

Food storage and preservation

Meat that has been gas flushed; a technique used for modified atmosphere packaging. Taylor pork roll slices on pkg.JPG
Meat that has been gas flushed; a technique used for modified atmosphere packaging.

Food storage and preservation is a key component of food engineering processes and relies heavily on biological engineering to understand and manipulate the organisms involved. Note that the above food safety processes such as pasteurization and sterilization destroy the microorganisms that also contribute to deterioration of food products while not necessarily posing a risk to people. Understanding of these processes, their effects, and the microorganisms at play in various food processing techniques is a very important biological engineering task within food engineering. Factories and processes must be created to ensure that food products can be processed in an efficient and effective manner, which again relies heavily on biological engineering expertise.

Produce

Preservation and processing of fresh produce poses many biological engineering challenges. Understanding of biology is particularly important to processing produce because most fruits and vegetables are living organisms from the time of harvest to the time of consumption. Before harvesting, understanding of plant ontogeny, or origin and development, and the manipulation of these developmental processes are key components of the industrial agriculture process. Understanding of plant developmental cycles governs how and when plants are harvested, impacts storage environments, and contributes to creating intervention processes. Even after harvesting, fruits and vegetables undergo the biological processes of respiration, transpiration, and ripening. Control over these natural plant processes should be achieved to prevent food spoilage, sprouting or growth of produce during storage, and reduction in quality or desirability, such as through wilting or loss of desirable texture. [17]

Technology

When considering food storage and preservation, the technologies of modified atmosphere and controlled atmosphere are widely used for the storage and packing of several types of foods. They offer several advantages such as delay of ripening and senescence of horticultural commodities, control of some biological processes such as rancidity, insects, bacteria and decay, among others. [18] Controlled atmosphere (CA) storage refers to atmospheres that are different than normal air and strictly controlled at all times. [18] This type of storage manipulates the CO2 and O2 levels within airtight stores of containers. Modified atmosphere (MA) storage refers to any atmosphere different from normal air, typically made by mixing CO2, O2, and N2.

Waste management

Another biological engineering process within food engineering involves the processing of agricultural waste. Though it may fall more within the realm of environmental engineering, understanding how organisms in the environment will respond to the waste products is important for assessing the impact of the processes and comparing waste processing strategies. It is also important to understand which organisms are involved in the decomposition of the waste products, and the byproducts that will be produced as a result of their activity.

To discuss direct application of biological engineering, biological waste processing techniques are used to process organic waste and sometimes create useful byproducts. There are two main processes by which organic matter is processed via microbes: aerobic processes and anaerobic processes. These processes convert organic matter to cell mass through synthesis processes of microorganisms. Aerobic processes occur in the presence of oxygen, take organic matter as input, and produce water, carbon dioxide, nitrate, and new cell mass. Anaerobic processes occur in the absence of oxygen and produce less cell mass than aerobic processes. An additional benefit of anaerobic processes is that they also generate methane, which can be burned as a fuel source. Design of both aerobic and anaerobic biological waste processing plants requires careful control of temperature, humidity, oxygen concentration, and the waste products involved. Understanding of all aspects of the system and how they interact with one another is important for developing efficient waste management plants and falls within the realm of biological engineering. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Food preservation</span> Inhibition of microbial growth in food

Food preservation includes processes that make food more resistant to microorganism growth and slow the oxidation of fats. This slows down the decomposition and rancidification process. Food preservation may also include processes that inhibit visual deterioration, such as the enzymatic browning reaction in apples after they are cut during food preparation. By preserving food, food waste can be reduced, which is an important way to decrease production costs and increase the efficiency of food systems, improve food security and nutrition and contribute towards environmental sustainability. For instance, it can reduce the environmental impact of food production.

<span class="mw-page-title-main">Food irradiation</span> Sterilization of food with ionizing radiations for enhanced preservation and longer shelflife

Food irradiation is the process of exposing food and food packaging to ionizing radiation, such as from gamma rays, x-rays, or electron beams. Food irradiation improves food safety and extends product shelf life (preservation) by effectively destroying organisms responsible for spoilage and foodborne illness, inhibits sprouting or ripening, and is a means of controlling insects and invasive pests.

<span class="mw-page-title-main">Pasteurization</span> Process of preserving foods with heat

In the field of food processing, pasteurization is a process of food preservation in which packaged and unpacked foods are treated with mild heat, usually to less than 100 °C (212 °F), to eliminate pathogens and extend shelf life. Pasteurization either destroys or deactivates microorganisms and enzymes that contribute to food spoilage or the risk of disease, including vegetative bacteria, but most bacterial spores survive the process.

The following outline is provided as an overview of and topical guide to agriculture:

<span class="mw-page-title-main">Ultra-high-temperature processing</span> Food sterilization process

Ultra-high temperature processing (UHT), ultra-heat treatment, or ultra-pasteurization is a food processing technology that sterilizes liquid food by heating it above 140 °C (284 °F) – the temperature required to kill bacterial endospores – for two to five seconds. UHT is most commonly used in milk production, but the process is also used for fruit juices, cream, soy milk, yogurt, wine, soups, honey, and stews. UHT milk was first developed in the 1960s and became generally available for consumption in the 1970s. The heat used during the UHT process can cause Maillard browning and change the taste and smell of dairy products. An alternative process is flash pasteurization, in which the milk is heated to 72 °C (162 °F) for at least fifteen seconds.

<span class="mw-page-title-main">Sterilization (microbiology)</span> Process that eliminates all biological agents on an object or in a volume

Sterilization refers to any process that removes, kills, or deactivates all forms of life and other biological agents present in or on a specific surface, object, or fluid. Sterilization can be achieved through various means, including heat, chemicals, irradiation, high pressure, and filtration. Sterilization is distinct from disinfection, sanitization, and pasteurization, in that those methods reduce rather than eliminate all forms of life and biological agents present. After sterilization, an object is referred to as being sterile or aseptic.

<span class="mw-page-title-main">Psychrophile</span> Organism capable of growing and reproducing in the cold

Psychrophiles or cryophiles are extremophilic organisms that are capable of growth and reproduction in low temperatures, ranging from −20 °C (−4 °F) to 20 °C (68 °F). They are found in places that are permanently cold, such as the polar regions and the deep sea. They can be contrasted with thermophiles, which are organisms that thrive at unusually high temperatures, and mesophiles at intermediate temperatures. Psychrophile is Greek for 'cold-loving', from Ancient Greek ψυχρός (psukhrós) 'cold, frozen'.

<span class="mw-page-title-main">Food engineering</span> Field of applied physical sciences

Food engineering is a scientific, academic, and professional field that interprets and applies principles of engineering, science, and mathematics to food manufacturing and operations, including the processing, production, handling, storage, conservation, control, packaging and distribution of food products. Given its reliance on food science and broader engineering disciplines such as electrical, mechanical, civil, chemical, industrial and agricultural engineering, food engineering is considered a multidisciplinary and narrow field.

<span class="mw-page-title-main">Food technology</span> Academic discipline regarding the preparation of foods

Food technology is a branch of food science that addresses the production, preservation, quality control and research and development of food products.

<span class="mw-page-title-main">Fermentation</span> Metabolic process producing energy in the absence of oxygen

Fermentation is a metabolic process that produces chemical changes in organic substances through the action of enzymes. In biochemistry, it is broadly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food production, it may more broadly refer to any process in which the activity of microorganisms brings about a desirable change to a foodstuff or beverage. The science of fermentation is known as zymology.

<span class="mw-page-title-main">Shelf-stable food</span> Foods that can be stored at room temperature

Shelf-stable food is food of a type that can be safely stored at room temperature in a sealed container. This includes foods that would normally be stored refrigerated, but which have been processed so that they can be safely stored at room or ambient temperature for a usefully long shelf life.

<span class="mw-page-title-main">Fish processing</span> Process from catching to selling fish

The term fish processing refers to the processes associated with fish and fish products between the time fish are caught or harvested, and the time the final product is delivered to the customer. Although the term refers specifically to fish, in practice it is extended to cover any aquatic organisms harvested for commercial purposes, whether caught in wild fisheries or harvested from aquaculture or fish farming.

Aseptic processing is a processing technique wherein commercially thermally sterilized liquid products are packaged into previously sterilized containers under sterile conditions to produce shelf-stable products that do not need refrigeration. Aseptic processing has almost completely replaced in-container sterilization of liquid foods, including milk, fruit juices and concentrates, cream, yogurt, salad dressing, liquid egg, and ice cream mix. There has been an increasing popularity for foods that contain small discrete particles, such as cottage cheese, baby foods, tomato products, fruit and vegetables, soups, and rice desserts.

<span class="mw-page-title-main">Fish preservation</span>

Fish preservation is the method of increasing the shelf life of fish and other fish products by applying the principles of different branches of science in order to keep the fish, after it has landed, in a condition wholesome and fit for human consumption. Ancient methods of preserving fish included drying, salting, pickling and smoking. All of these techniques are still used today but the more modern techniques of freezing and canning have taken on a large importance.

Abe Anellis (1914–2001), was a food microbiologist.

Alicyclobacillus is a genus of Gram-variable, rod-shaped, spore-forming bacteria. The bacteria are able to grow in acidic conditions, while the spores are able to survive typical pasteurization procedures.

Pascalization, bridgmanization, high pressure processing (HPP) or high hydrostatic pressure (HHP) processing is a method of preserving and sterilizing food, in which a product is processed under very high pressure, leading to the inactivation of certain microorganisms and enzymes in the food. HPP has a limited effect on covalent bonds within the food product, thus maintaining both the sensory and nutritional aspects of the product. The technique was named after Blaise Pascal, a 17th century French scientist whose work included detailing the effects of pressure on fluids. During pascalization, more than 50,000 pounds per square inch may be applied for approximately fifteen minutes, leading to the inactivation of yeast, mold, vegetative bacteria, and some viruses and parasites. Pascalization is also known as bridgmanization, named for physicist Percy Williams Bridgman.

<span class="mw-page-title-main">Thermization</span> Method of sanitizing raw milk with low heat

Thermization, also spelled thermisation, is a method of sanitizing raw milk with low heat. "Thermization is a generic description of a range of subpasteurization heat treatments that markedly reduce the number of spoilage bacteria in milk with minimal heat damage." The process is not used on other food products, and is similar to pasteurization but uses lower temperatures, allowing the milk product to retain more of its original taste. In Europe, there is a distinction between cheeses made of thermized milk and raw-milk cheeses. However, the United States' Food and Drug Administration (FDA) places the same regulations on all unpasteurized cheeses. As a result, cheeses from thermized milk must be aged for 60 days or more before being sold in the United States, the same restriction placed on raw-milk cheeses by the FDA.

<span class="mw-page-title-main">Food spoilage</span> Often due to bacteria and fungi

Food spoilage is the process where a food product becomes unsuitable to ingest by the consumer. The cause of such a process is due to many outside factors as a side-effect of the type of product it is, as well as how the product is packaged and stored. Due to food spoilage, one-third of the world's food produced for the consumption of humans is lost every year. Bacteria and various fungi are the cause of spoilage and can create serious consequences for the consumers, but there are preventive measures that can be taken.

Microbes can be damaged or killed by elements of their physical environment such as temperature, radiation, or exposure to chemicals; these effects can be exploited in efforts to control pathogens, often for the purpose of food safety.

References

  1. "Become a Food Process Engineer: Education and Career Roadmap". Study.com. Retrieved 2018-04-02.
  2. 1 2 "Biological Engineering | Department of Biological and Environmental Engineering". bee.cals.cornell.edu. Archived from the original on 2018-04-20. Retrieved 2018-04-03.
  3. "Biological Engineering | Department of Biological and Environmental Engineering". bee.cals.cornell.edu. Archived from the original on 2018-04-20. Retrieved 2018-04-19.
  4. "Food Scientists and Technologists". www.bls.gov. Retrieved 2018-04-03.
  5. "Insect-resistant Crops Through Genetic Engineering". www.aces.uiuc.edu. Retrieved 2018-04-03.
  6. "Foodborne and Waterborne Disease Outbreaks — United States, 1971–2012". www.cdc.gov. Retrieved 2018-04-18.
  7. "Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability". Wiley.com. 2018-03-12. Retrieved 2018-04-01.
  8. 1 2 3 Ramaswamy, Raghupathy; Ahn, Juhee; Balasubramaniam, V.M.; Saona, Luis Rodriguez; Yousef, Ahmed E. (January 2013). "Food Safety Engineering". Handbook of Farm, Dairy and Food Machinery Engineering (Second ed.). Elsevier. pp. 43–66. doi:10.1016/B978-0-12-385881-8.00003-3. ISBN   9780123858818.
  9. Institute, of Food Technologies (IFT). "Kinetics of Microbial Inactivation for Alternative Food Processing Technologies" (PDF). FDA/IFT. Retrieved 30 March 2018.
  10. 1 2 Perry, J.D.; Freydière, A.M. (2007). "The application of chromogenic media in clinical microbiology". Journal of Applied Microbiology. 103 (6): 2046–2055. doi:10.1111/j.1365-2672.2007.03442.x. PMID   18045388.
  11. Vosough, Massoud (2010). "An Article on Chromogenic Media" (PDF). Conda News.
  12. 1 2 Institute of Food Technology (June 2, 2000). "Kinetics of Microbial Inactivation for Alternative Food Processing Technologies" (PDF). FDA.
  13. Rahman, M. Shafiur (2007). Handbook of Food Preservation, Second Edition (PDF). CRC Press. pp. 571–574. ISBN   978-1-57444-606-7.
  14. Rahman, M. Shafiur (2007). Handbook of Food Preservation, Second Edition (PDF). CRC Press. pp. 586–587. ISBN   978-1-57444-606-7.
  15. 1 2 Berk, Zeki (2009). "Spoilage and preservation of foods". Food Process Engineering and Technology. pp. 351–354. doi:10.1016/B978-0-12-373660-4.00016-8. ISBN   9780123736604.
  16. Rahman, M. Shafiur (2007). Handbook of Food Preservation, Second Edition (PDF). CRC Press. p. 763. ISBN   978-1-57444-606-7.
  17. Rahman, M. Shafiur (2007). Handbook of Food Preservation, Second Edition (PDF). CRC Press. pp. 19–23. ISBN   978-1-57444-606-7.
  18. 1 2 "Modified and Controlled Atmospheres for the Storage, Transportation, and Packaging of Horticultural Commodities". CRC Press. Retrieved 2018-04-01.

Further reading