Biochemical engineering

Last updated
Bioreactor BTEC Bioreactors.jpg
Bioreactor

Biochemical engineering, also known as bioprocess engineering, is a field of study with roots stemming from chemical engineering and biological engineering. It mainly deals with the design, construction, and advancement of unit processes that involve biological organisms (such as fermentation) or organic molecules (often enzymes) and has various applications in areas of interest such as biofuels, food, pharmaceuticals, biotechnology, and water treatment processes. [1] [2] The role of a biochemical engineer is to take findings developed by biologists and chemists in a laboratory and translate that to a large-scale manufacturing process.

Contents

History

For hundreds of years, humans have made use of the chemical reactions of biological organisms in order to create goods. In the mid-1800s, Louis Pasteur was one of the first people to look into the role of these organisms when he researched fermentation. His work also contributed to the use of pasteurization, which is still used to this day. By the early 1900s, the use of microorganisms had expanded, and was used to make industrial products. Up to this point, biochemical engineering hadn't developed as a field yet. It wasn't until 1928 when Alexander Fleming discovered penicillin that the field of biochemical engineering was established. After this discovery, samples were gathered from around the world in order to continue research into the characteristics of microbes from places such as soils, gardens, forests, rivers, and streams. Today, biochemical engineers can be found working in a variety of industries, from food to pharmaceuticals. This is due to the increasing need for efficiency and production which requires knowledge of how biological systems and chemical reactions interact with each other and how they can be used to meet these needs.

Education

Biochemical engineering is not a major offered by most universities and is instead an area of interest under the chemical engineering major in most cases. The following universities are known to offer degrees in biochemical engineering:

Applications

Applications biochemical engineering Applications of combinatorial gene circuit optimization strategies.svg
Applications biochemical engineering

Biotechnology

Biotechnology and biochemical engineering are closely related to each other as biochemical engineering can be considered a sub-branch of biotechnology. One of the primary focuses of biotechnology is in the medical field, where biochemical engineers work to design pharmaceuticals, artificial organs, biomedical devices, chemical sensors, and drug delivery systems. [3] Biochemical engineers use their knowledge of chemical processes in biological systems in order to create tangible products that improve people's health. Specific areas of studies include metabolic, enzyme, and tissue engineering. The study of cell cultures is widely used in biochemical engineering and biotechnology due to its many applications in developing natural fuels, improving the efficiency in producing drugs and pharmaceutical processes, and also creating cures for disease. [4] Other medical applications of biochemical engineering within biotechnology are genetics testing and pharmacogenomics.

Food Industry

Biochemical engineers primarily focus on designing systems that will improve the production, processing, packaging, storage, and distribution of food. [1] Some commonly processed foods include wheat, fruits, and milk which undergo processes such as milling, dehydration, and pasteurization in order to become products that can be sold. There are three levels of food processing: primary, secondary, and tertiary. Primary food processing involves turning agricultural products into other products that can be turned into food, secondary food processing is the making of food from readily available ingredients, and tertiary food processing is commercial production of ready-to eat or heat-and-serve foods. Drying, pickling, salting, and fermenting foods were some of the oldest food processing techniques used to preserve food by preventing yeasts, molds, and bacteria to cause spoiling. [5] Methods for preserving food have evolved to meet current standards of food safety but still use the same processes as the past. Biochemical engineers also work to improve the nutritional value of food products, such as in golden rice, which was developed to prevent vitamin A deficiency in certain areas where this was an issue. Efforts to advance preserving technologies can also ensure lasting retention of nutrients as foods are stored. Packaging plays a key role in preserving as well as ensuring the safety of the food by protecting the product from contamination, physical damage, and tampering. [5] Packaging can also make it easier to transport and serve food. A common job for biochemical engineers working in the food industry is to design ways to perform all these processes on a large scale in order to meet the demands of the population. Responsibilities for this career path include designing and performing experiments, optimizing processes, consulting with groups to develop new technologies, and preparing project plans for equipment and facilities. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Biotechnology</span> Use of living systems and organisms to develop or make useful products

Biotechnology is a multidisciplinary field that involves the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services.

<span class="mw-page-title-main">Paper engineering</span>

Paper engineering is a branch of engineering that deals with the usage of physical science and life sciences in conjunction with mathematics as applied to the converting of raw materials into useful paper products and co-products. The field applies various principles in process engineering and unit operations to the manufacture of paper, chemicals, energy and related materials. The following timeline shows some of the key steps in the development of the science of chemical and bioprocess engineering:

<span class="mw-page-title-main">Bioreactor</span> System that supports a biologically active environment

A bioreactor refers to any manufactured device or system that supports a biologically active environment. In one case, a bioreactor is a vessel in which a chemical process is carried out which involves organisms or biochemically active substances derived from such organisms. This process can either be aerobic or anaerobic. These bioreactors are commonly cylindrical, ranging in size from litres to cubic metres, and are often made of stainless steel. It may also refer to a device or system designed to grow cells or tissues in the context of cell culture. These devices are being developed for use in tissue engineering or biochemical/bioprocess engineering.

<span class="mw-page-title-main">Food engineering</span> Field of applied physical sciences

Food engineering is a scientific, academic, and professional field that interprets and applies principles of engineering, science, and mathematics to food manufacturing and operations, including the processing, production, handling, storage, conservation, control, packaging and distribution of food products. Given its reliance on food science and broader engineering disciplines such as electrical, mechanical, civil, chemical, industrial and agricultural engineering, food engineering is considered a multidisciplinary and narrow field.

<span class="mw-page-title-main">Metabolic engineering</span>

Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the cell's production of a certain substance. These processes are chemical networks that use a series of biochemical reactions and enzymes that allow cells to convert raw materials into molecules necessary for the cell's survival. Metabolic engineering specifically seeks to mathematically model these networks, calculate a yield of useful products, and pin point parts of the network that constrain the production of these products. Genetic engineering techniques can then be used to modify the network in order to relieve these constraints. Once again this modified network can be modeled to calculate the new product yield.

A bioprocess is a specific process that uses complete living cells or their components to obtain desired products.

Industrial fermentation is the intentional use of fermentation in manufacturing processes. In addition to the mass production of fermented foods and drinks, industrial fermentation has widespread applications in chemical industry. Commodity chemicals, such as acetic acid, citric acid, and ethanol are made by fermentation. Moreover, nearly all commercially produced industrial enzymes, such as lipase, invertase and rennet, are made by fermentation with genetically modified microbes. In some cases, production of biomass itself is the objective, as is the case for single-cell proteins, baker's yeast, and starter cultures for lactic acid bacteria used in cheesemaking.

Downstream processing refers to the recovery and the purification of biosynthetic products, particularly pharmaceuticals, from natural sources such as animal tissue, plant tissue or fermentation broth, including the recycling of salvageable components as well as the proper treatment and disposal of waste. It is an essential step in the manufacture of pharmaceuticals such as antibiotics, hormones, antibodies and vaccines; antibodies and enzymes used in diagnostics; industrial enzymes; and natural fragrance and flavor compounds. Downstream processing is usually considered a specialized field in biochemical engineering, which is itself a specialization within chemical engineering. Many of the key technologies were developed by chemists and biologists for laboratory-scale separation of biological and synthetic products, whilst the role of biochemical and chemical engineers is to develop the technologies towards larger production capacities.

This page provides an alphabetical list of articles and other pages about biotechnology.

<span class="mw-page-title-main">Jay Keasling</span> American biologist

Jay D. Keasling is a professor of chemical engineering and bioengineering at the University of California, Berkeley. He is also associate laboratory director for biosciences at the Lawrence Berkeley National Laboratory and chief executive officer of the Joint BioEnergy Institute. He is considered one of the foremost authorities in synthetic biology, especially in the field of metabolic engineering.

<span class="mw-page-title-main">Fermentation</span> Metabolic process producing energy in the absence of oxygen

Fermentation is a metabolic process that produces chemical changes in organic substances through the action of enzymes. In biochemistry, it is broadly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food production, it may more broadly refer to any process in which the activity of microorganisms brings about a desirable change to a foodstuff or beverage. The science of fermentation is known as zymology.

<span class="mw-page-title-main">Biological engineering</span> Application of biology and engineering to create useful products

Biological engineering or bioengineering is the application of principles of biology and the tools of engineering to create usable, tangible, economically viable products. Biological engineering employs knowledge and expertise from a number of pure and applied sciences, such as mass and heat transfer, kinetics, biocatalysts, biomechanics, bioinformatics, separation and purification processes, bioreactor design, surface science, fluid mechanics, thermodynamics, and polymer science. It is used in the design of medical devices, diagnostic equipment, biocompatible materials, renewable energy, ecological engineering, agricultural engineering, process engineering and catalysis, and other areas that improve the living standards of societies.

<span class="mw-page-title-main">Jonathan Dordick</span> American biochemist (born 1959)

Jonathan S. Dordick is an institute professor of chemical and biological engineering at Rensselaer Polytechnic Institute and holds joint appointments in the departments of biomedical engineering and biological sciences. In 2008 he became director of the Center for Biotechnology and Interdisciplinary Studies. In 2012 Dordick became the vice president for research at RPI. He became Special Advisor to the RPI President for Strategic Initiatives in 2018,

Bioprocess engineering, also biochemical engineering, is a specialization of chemical engineering or biological engineering. It deals with the design and development of equipment and processes for the manufacturing of products such as agriculture, food, feed, pharmaceuticals, nutraceuticals, chemicals, and polymers and paper from biological materials & treatment of waste water. Bioprocess engineering is a conglomerate of mathematics, biology and industrial design, and consists of various spectrums like the design and study of bioreactors to the creation of kinetic models. It also deals with studying various biotechnological processes used in industries for large scale production of biological product for optimization of yield in the end product and the quality of end product. Bioprocess engineering may include the work of mechanical, electrical, and industrial engineers to apply principles of their disciplines to processes based on using living cells or sub component of such cells.

Biomolecular engineering is the application of engineering principles and practices to the purposeful manipulation of molecules of biological origin. Biomolecular engineers integrate knowledge of biological processes with the core knowledge of chemical engineering in order to focus on molecular level solutions to issues and problems in the life sciences related to the environment, agriculture, energy, industry, food production, biotechnology and medicine.

<span class="mw-page-title-main">Acetone–butanol–ethanol fermentation</span> Chemical process

Acetone–butanol–ethanol (ABE) fermentation, also known as the Weizmann process, is a process that uses bacterial fermentation to produce acetone, n-butanol, and ethanol from carbohydrates such as starch and glucose. It was developed by chemist Chaim Weizmann and was the primary process used to produce acetone, which was needed to make cordite, a substance essential for the British war industry during World War I.

Bioproducts or bio-based products are materials, chemicals and energy derived from renewable biological material.

Bioproducts engineering or bioprocess engineering refers to engineering of bio-products from renewable bioresources. This pertains to the design and development of processes and technologies for the sustainable manufacture of bioproducts from renewable biological resources.

Wei-Shou Hu is a Taiwanese-American chemical engineer. He earned his B.S. in agricultural chemistry from National Taiwan University in 1974 and his Ph.D. in biochemical engineering from the Massachusetts Institute of Technology under the guidance of Daniel I.C. Wang in 1983. He has been a professor with the University of Minnesota since 1983. Dr. Hu has long impacted the field of cell culture bioprocessing since its infancy by steadfastly introducing quantitative and systematic analysis into this field. His work, which covers areas such as modeling and controlling cell metabolism, modulating glycosylation, and process data mining, has helped shape the advances of biopharmaceutical process technology. He recently led an industrial consortium to embark on genomic research on Chinese hamster ovary cells, the main workhorse of biomanufacturing, and to promote post-genomic research in cell bioprocessing. His research focuses on the field of cell culture bioprocessing, particularly metabolic control of the physiological state of the cell. In addition to his work with Chinese hamster ovary cells, his work has enabled the use of process engineering for cell therapy, especially with liver cells. Dr.Hu has written four different biotechnology books. Also, one of his articles is cited by 63.

<span class="mw-page-title-main">Industrial microbiology</span>

Industrial microbiology is a branch of biotechnology that applies microbial sciences to create industrial products in mass quantities, often using microbial cell factories. There are multiple ways to manipulate a microorganism in order to increase maximum product yields. Introduction of mutations into an organism may be accomplished by introducing them to mutagens. Another way to increase production is by gene amplification, this is done by the use of plasmids, and vectors. The plasmids and/ or vectors are used to incorporate multiple copies of a specific gene that would allow more enzymes to be produced that eventually cause more product yield. The manipulation of organisms in order to yield a specific product has many applications to the real world like the production of some antibiotics, vitamins, enzymes, amino acids, solvents, alcohol and daily products. Microorganisms play a big role in the industry, with multiple ways to be used. Medicinally, microbes can be used for creating antibiotics in order to treat infection. Microbes can also be used for the food industry as well. Microbes are very useful in creating some of the mass produced products that are consumed by people. The chemical industry also uses microorganisms in order to synthesize amino acids and organic solvents. Microbes can also be used in an agricultural application for use as a biopesticide instead of using dangerous chemicals and or inoculants to help plant proliferation.

References

  1. 1 2 "Biochemical Engineering". UC Davis. 2015-11-27. Retrieved 2019-02-13.
  2. Ruairi.Kavanagh (2014-12-18). "Biochemical engineer". gradireland. Retrieved 2019-02-13.
  3. "Chemical and Biochemical Engineering | School of Engineering". www.brown.edu. Archived from the original on 2019-02-12. Retrieved 2019-03-18.
  4. "Biochemical Engineer | Science & Engineering Career". Science Buddies. Retrieved 2019-03-18.
  5. 1 2 3 Driver, Kelly; Health, JH Bloomberg School of Public. "Food Processing". Johns Hopkins Bloomberg School of Public Health. Archived from the original on 2021-04-27. Retrieved 2019-03-18.