Cholesterol total synthesis

Last updated
Cholesterol Cholesterol.svg
Cholesterol
Cholesterol space-filling model Cholesterol Spacefill.jpeg
Cholesterol space-filling model

Cholesterol total synthesis in chemistry describes the total synthesis of the complex biomolecule cholesterol and is considered a great scientific achievement. [1] The research group of Robert Robinson with John Cornforth (Oxford University) published their synthesis in 1951 [2] and that of Robert Burns Woodward with Franz Sondheimer (Harvard University) in 1952. [3] Both groups competed for the first publication since 1950 with Robinson having started in 1932 and Woodward in 1949. According to historian Greg Mulheirn the Robinson effort was hampered by his micromanagement style of leadership and the Woodward effort was greatly facilitated by his good relationships with chemical industry. Around 1949 steroids like cortisone were produced from natural resources but expensive. Chemical companies Merck & Co. and Monsanto saw commercial opportunities for steroid synthesis and not only funded Woodward but also provided him with large quantities of certain chemical intermediates from pilot plants. Hard work also helped the Woodward effort: one of the intermediate compounds was named Christmasterone as it was synthesized on Christmas Day 1950 by Sondheimer.

Contents

Other cholesterol schemes have also been developed: racemic cholesterol was synthesized in 1966 by W.S. Johnson, [4] the enantiomer of natural cholesterol was reported in 1996 by Rychnovsky and Mickus, [5] in 2002 by Jiang & Covey [6] and again in 2008 by Rychnovsky and Belani. [7]

The molecule

Cholesterol is a tetracyclic alcohol and a type of sterol. Added to the sterol frame with the alcohol group at position 3 are 2 methyl groups at carbon positions 10 and 13 and a 2-isooctyl group at position 17. The molecule is unsaturated at position 5,6 with an alkene group. The total number of stereocenters is 8. The unnatural cholesterol molecule that has also been synthesized is called ent-cholesterol. Cholesterol overview.svg

Robinson synthesis

The Robinson synthesis is an example of a so-called relay synthesis. As many of the chemical intermediates (all steroids) were already known and available from natural resources all that was needed for a formal synthesis was proof that these intermediates could be linked to each other via chemical synthesis. Starting point for the Robinson synthesis was 1,6-dihydroxynaphthalene 1 that was converted in about 20 steps into the then already known androsterone 4. Ruzicka had already demonstrated in 1938 that androsterone could be converted into androstenedione 5 [8] and Robinson demonstrated its conversion to dehydroepiandrosterone 6 (note the epimerized hydroxyl group) also already a known compound. [9] Conversion of 6 to pregnenolone 7 and then to allopregnanolone 8 allowed the addition of the tail group as the acetate in 9 and then conversion to cholestanol 10.

Cholesterol Robinson synthesis Cholesterol Robinson synthesis.svg
Cholesterol Robinson synthesis

The conversion of cholestanol to cholesterol was already demonstrated by oxidation of the ketone, bromination to the bromoketone and elimination to the enone.

Cholestenone - cholesterol synthesis Ruzicka Cholestenone synthesis Ruzicka.svg
Cholestenone - cholesterol synthesis Ruzicka

The conversion of cholestenone into cholesterol by the method of Dauben and Eastham (1950) [10] consisted of reduction of the enol acetate (lithium aluminium hydride) and fractionation with digitonin for the isolation of the correct isomer.

Woodward synthesis

Starting point for the Woodward synthesis was the hydroquinone 1 that was converted to cis-bicycle 2 in a Diels-Alder reaction with butadiene. Conversion to the desired trans isomer 5 was accomplished by synthesis of the sodium enolate salt 4 (benzene, sodium hydride) followed by acidification. Reduction (lithium aluminium hydride) then gave diol 6, a dehydration (HCl/water) gave ketol 7, deoxygenation of its acetate by elemental zinc gave enone 8, formylation (ethyl formate) gave enol 9, Michael ethyl vinyl ketone addition (potassium t-butoxide/t-butanol) gave dione 11 which on reaction with KOH in dioxane gave tricycle 12 in an aldol condensation with elimination of the formyl group. In the next series of steps oxidation (osmium tetroxide) gave diol 13, protection (acetone/copper sulfate) gave acetonide 14, hydrogenation (palladium-strontium carbonate) gave 15, formylation (ethyl formate) gave enol 16 which protected as the enamine 17 (N-methylaniline/methanol) gave via the potassium anion 18, carboxylic acid 19 by reaction with cyanoethylene using triton B as the base.

Cholesterol synthesis Woodward 1 Cholesterol synthesis Woodward 1.svg
Cholesterol synthesis Woodward 1

Acid 19 was converted to lactone 20 (acetic anhydride, sodium acetate) and reaction with methylmagnesium chloride gave tetracyclic ketone 21. Treatment with periodic acid (dioxane) and piperidine acetate (benzene) gave aldehyde 24 through diol 22 (oxidation) and dialdehyde 23 (aldol condensation). Sodium dichromate oxidation gave carboxylic acid 25, Diazomethane treatment gave methyl ester 26 and sodium borohydride the allyl alcohol 27. Chiral resolution of this racemic compound with digitonin produced chiral 28 and on Oppenauer oxidation chiral 29. Hydrogenation (Adams' catalyst) gave alcohol 30, chromic acid oxidation gave ketone 31, sodium borohydride reduction stereoselectively gave alcohol 32, hydrolysis followed by acylation gave acetate 33, thionyl chloride treatment gave acyl chloride 34 and methyl cadmium the ketone 35.

Cholesterol synthesis Woodward 2 Cholesterol synthesis Woodward 2.svg
Cholesterol synthesis Woodward 2

In the final stages reaction of 35 with isohexylmagnesium bromide 36 gave diol 37, acetic acid treatment gave dehydration and then hydrogenation gave acetate 38. Hydrolysis of this ester gave cholestanol 39. The route from cholestanol to cholesterol was already known (see: Robinson synthesis).

Cholesterol synthesis Woodward 3 Cholesterol synthesis Woodward 3.svg
Cholesterol synthesis Woodward 3

Related Research Articles

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is a functional group with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Elias James Corey</span> American chemist (born 1928)

Elias James Corey is an American organic chemist. In 1990, he won the Nobel Prize in Chemistry "for his development of the theory and methodology of organic synthesis", specifically retrosynthetic analysis. Regarded by many as one of the greatest living chemists, he has developed numerous synthetic reagents, methodologies and total syntheses and has advanced the science of organic synthesis considerably.

<span class="mw-page-title-main">Aldol reaction</span> Chemical reaction

The aldol reaction is a means of forming carbon–carbon bonds in organic chemistry. Discovered independently by the Russian chemist Alexander Borodin in 1869 and by the French chemist Charles-Adolphe Wurtz in 1872, the reaction combines two carbonyl compounds to form a new β-hydroxy carbonyl compound. These products are known as aldols, from the aldehyde + alcohol, a structural motif seen in many of the products. Aldol structural units are found in many important molecules, whether naturally occurring or synthetic. For example, the aldol reaction has been used in the large-scale production of the commodity chemical pentaerythritol and the synthesis of the heart disease drug Lipitor.

<span class="mw-page-title-main">Enamine</span> Class of chemical compounds

An enamine is an unsaturated compound derived by the condensation of an aldehyde or ketone with a secondary amine. Enamines are versatile intermediates.

<span class="mw-page-title-main">Corey–Itsuno reduction</span>

The Corey–Itsuno reduction, also known as the Corey–Bakshi–Shibata (CBS) reduction, is a chemical reaction in which an achiral ketone is enantioselectively reduced to produce the corresponding chiral, non-racemic alcohol. The oxazaborolidine reagent which mediates the enantioselective reduction of ketones was previously developed by the laboratory of Itsuno and thus this transformation may more properly be called the Itsuno-Corey oxazaborolidine reduction.

<span class="mw-page-title-main">Nicolaou Taxol total synthesis</span>

The Nicolaou Taxol total synthesis, published by K. C. Nicolaou and his group in 1994 concerns the total synthesis of taxol. Taxol is an important drug in the treatment of cancer but also expensive because the compound is harvested from a scarce resource, namely the pacific yew.

Dihydroxylation is the process by which an alkene is converted into a vicinal diol. Although there are many routes to accomplish this oxidation, the most common and direct processes use a high-oxidation-state transition metal. The metal is often used as a catalyst, with some other stoichiometric oxidant present. In addition, other transition metals and non-transition metal methods have been developed and used to catalyze the reaction.

<span class="mw-page-title-main">Danishefsky Taxol total synthesis</span>

The Danishefsky Taxol total synthesis in organic chemistry is an important third Taxol synthesis published by the group of Samuel Danishefsky in 1996 two years after the first two efforts described in the Holton Taxol total synthesis and the Nicolaou Taxol total synthesis. Combined they provide a good insight in the application of organic chemistry in total synthesis.

<span class="mw-page-title-main">Holton Taxol total synthesis</span>

The Holton Taxol total synthesis, published by Robert A. Holton and his group at Florida State University in 1994, was the first total synthesis of Taxol.

<span class="mw-page-title-main">Galantamine total synthesis</span>

The article concerns the total synthesis of galanthamine, a drug used for the treatment of mild to moderate Alzheimer's disease.

In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture. In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resulting in an enantioenriched sample of the less reactive enantiomer. As opposed to chiral resolution, kinetic resolution does not rely on different physical properties of diastereomeric products, but rather on the different chemical properties of the racemic starting materials. The enantiomeric excess (ee) of the unreacted starting material continually rises as more product is formed, reaching 100% just before full completion of the reaction. Kinetic resolution relies upon differences in reactivity between enantiomers or enantiomeric complexes.

Oppenauer oxidation, named after Rupert Viktor Oppenauer, is a gentle method for selectively oxidizing secondary alcohols to ketones.

The Rubottom oxidation is a useful, high-yielding chemical reaction between silyl enol ethers and peroxyacids to give the corresponding α-hydroxy carbonyl product. The mechanism of the reaction was proposed in its original disclosure by A.G. Brook with further evidence later supplied by George M. Rubottom. After a Prilezhaev-type oxidation of the silyl enol ether with the peroxyacid to form the siloxy oxirane intermediate, acid-catalyzed ring-opening yields an oxocarbenium ion. This intermediate then participates in a 1,4-silyl migration to give an α-siloxy carbonyl derivative that can be readily converted to the α-hydroxy carbonyl compound in the presence of acid, base, or a fluoride source.

The total synthesis of quinine, a naturally-occurring antimalarial drug, was developed over a 150-year period. The development of synthetic quinine is considered a milestone in organic chemistry although it has never been produced industrially as a substitute for natural occurring quinine. The subject has also been attended with some controversy: Gilbert Stork published the first stereoselective total synthesis of quinine in 2001, meanwhile shedding doubt on the earlier claim by Robert Burns Woodward and William Doering in 1944, claiming that the final steps required to convert their last synthetic intermediate, quinotoxine, into quinine would not have worked had Woodward and Doering attempted to perform the experiment. A 2001 editorial published in Chemical & Engineering News sided with Stork, but the controversy was eventually laid to rest once and for all when Williams and coworkers successfully repeated Woodward's proposed conversion of quinotoxine to quinine in 2007.

<span class="mw-page-title-main">Kuwajima Taxol total synthesis</span>

The Kuwajima Taxol total synthesis by the group of Isao Kuwajima of the Tokyo Institute of Technology is one of several efforts in taxol total synthesis published in the 1990s. The total synthesis of Taxol is considered a landmark in organic synthesis.

<span class="mw-page-title-main">Mukaiyama Taxol total synthesis</span>

The Mukaiyama taxol total synthesis published by the group of Teruaki Mukaiyama of the Tokyo University of Science between 1997 and 1999 was the 6th successful taxol total synthesis. The total synthesis of Taxol is considered a hallmark in organic synthesis.

<span class="mw-page-title-main">Strychnine total synthesis</span>

Strychnine total synthesis in chemistry describes the total synthesis of the complex biomolecule strychnine. The first reported method by the group of Robert Burns Woodward in 1954 is considered a classic in this research field.

<span class="mw-page-title-main">Carbonyl reduction</span> Organic reduction of any carbonyl group by a reducing agent

In organic chemistry, carbonyl reduction is the organic reduction of any carbonyl group by a reducing agent.

The Saegusa–Ito oxidation is a chemical reaction used in organic chemistry. It was discovered in 1978 by Takeo Saegusa and Yoshihiko Ito as a method to introduce α-β unsaturation in carbonyl compounds. The reaction as originally reported involved formation of a silyl enol ether followed by treatment with palladium(II) acetate and benzoquinone to yield the corresponding enone. The original publication noted its utility for regeneration of unsaturation following 1,4-addition with nucleophiles such as organocuprates.

In organic chemistry, alkynylation is an addition reaction in which a terminal alkyne is added to a carbonyl group to form an α-alkynyl alcohol.

References

  1. Robinson, Woodward and the synthesis of cholesterol Greg Mulheirn Endeavour Volume 24, Issue 3, 1 September 2000, Pages 107-110 doi : 10.1016/S0160-9327(00)01310-7
  2. Cardwell, H. M. E., Cornforth, J. W., Duff, S. R., Holtermann, H ,Robinson, Robert, Chemistry & Industry, 1951, 389-90
  3. The Total Synthesis of Steroids R. B. Woodward, Franz Sondheimer, David Taub, Karl Heusler, W. M. McLamore J. Am. Chem. Soc., 1952, 74 (17), pp. 4223–4251 doi : 10.1021/ja01137a001
  4. Steroid total synthesis—hydrochrysene approach—XVI: Racemic conessine, progesterone, cholesterol, and some related natural products W. S. Johnson, J. A. Marshall, J. F. W. Keana, R. W. Franck, D. G. Martin and J. V. Bauer Tetrahedron Volume 22, Supplement 8, 1966, Pages 541-601 doi : 10.1016/S0040-4020(01)90961-5
  5. Synthesis of ent-cholesterol, the unnatural enantiomer Scott D. Rychnovsky, Daniel E. Mickus J. Org. Chem., 1992, 57 (9), pp. 2732–2736 doi : 10.1021/jo00035a036
  6. Total Synthesis of ent-Cholesterol via a Steroid C,D-Ring Side-Chain Synthon Xin Jiang and Douglas F. Covey J. Org. Chem., 2002, 67 (14), pp. 4893–4900 doi : 10.1021/jo025535k
  7. A Concise Synthesis of ent-Cholesterol Scott D. Rychnovsky, Jitendra D. Belani J. Org. Chem., 2008, 73 (7), pp. 2768–2773 doi : 10.1021/jo702694g
  8. Ruzicka, L., Plattner, P. A. and Aeschbacher, R. (1938), Über Steroide und Sexualhormone. 44. Mitteilung. Zur Abspaltung von Bromwasserstoff aus 2-Brom-cholestanon und 2-Brom-androstandion. Helvetica Chimica Acta, 21: 866–872. doi : 10.1002/hlca.193802101113
  9. Kuwada and Nakamura (1938) J. Pharm. Soc. Jpn 58, 235
  10. ON THE CONVERSION OF CHOLESTENONE TO CHOLESTEROL William G. Dauben, Jerome F. Eastham J. Am. Chem. Soc., 1950, 72 (5), p. 2305 doi : 10.1021/ja01161a532