Name reaction

Last updated

A name reaction (or named reaction) is a chemical reaction named after its discoverer(s) or developer(s). Among the tens of thousands of organic reactions that are known, hundreds of such reactions are typically identified by the eponym. [1] Well-known examples include the Grignard reaction, the Sabatier reaction, the Wittig reaction, the Claisen condensation, the Friedel–Crafts acylation, and the Diels–Alder reaction. Books have been published devoted exclusively to name reactions; [2] [3] [4] the Merck Index , a chemical encyclopedia, also includes an appendix on name reactions.

As organic chemistry developed during the 20th century, chemists started associating synthetically useful reactions with the names of their discoverers or developers. In many cases, the name is merely a mnemonic. [2] Some reactions such as the Pummerer rearrangement, [3] the Pinnick oxidation and the Birch reduction [3] are named for people other than their discoverers, but this situation is not common.

Although systematic approaches for naming reactions based on the reaction mechanism or the overall transformation exist, such as the IUPAC nomenclature for organic chemical transformations, these technically-descriptive names are often unwieldy or not specific enough, so people names are often more practical for efficient communication. [5]

See also

Related Research Articles

Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. Chemistry also addresses the nature of chemical bonds in chemical compounds.

<span class="mw-page-title-main">Catalysis</span> Process of increasing the rate of a chemical reaction

Catalysis is the increase in rate of a chemical reaction due to an added substance known as a catalyst. Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quickly, very small amounts of catalyst often suffice; mixing, surface area, and temperature are important factors in reaction rate. Catalysts generally react with one or more reactants to form intermediates that subsequently give the final reaction product, in the process of regenerating the catalyst.

<span class="mw-page-title-main">Chemical reaction</span> Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products are generated. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

<span class="mw-page-title-main">Organic chemistry</span> Subdiscipline of chemistry, focusing on carbon compounds

Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. Study of structure determines their structural formula. Study of properties includes physical and chemical properties, and evaluation of chemical reactivity to understand their behavior. The study of organic reactions includes the chemical synthesis of natural products, drugs, and polymers, and study of individual organic molecules in the laboratory and via theoretical study.

<span class="mw-page-title-main">Organic reaction</span> Chemical reactions involving organic compounds

Organic reactions are chemical reactions involving organic compounds. The basic organic chemistry reaction types are addition reactions, elimination reactions, substitution reactions, pericyclic reactions, rearrangement reactions, photochemical reactions and redox reactions. In organic synthesis, organic reactions are used in the construction of new organic molecules. The production of many man-made chemicals such as drugs, plastics, food additives, fabrics depend on organic reactions.

<span class="mw-page-title-main">Epoxide</span> Organic compounds with a carbon-carbon-oxygen ring

In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.

<span class="mw-page-title-main">Aldol reaction</span> Chemical reaction

The aldol reaction is a reaction in organic chemistry that combines two carbonyl compounds to form a new β-hydroxy carbonyl compound. Its simplest form might involve the nucleophilic addition of an enolized ketone to another:

Thiophene is a heterocyclic compound with the formula C4H4S. Consisting of a planar five-membered ring, it is aromatic as indicated by its extensive substitution reactions. It is a colorless liquid with a benzene-like odor. In most of its reactions, it resembles benzene. Compounds analogous to thiophene include furan (C4H4O), selenophene (C4H4Se) and pyrrole (C4H4NH), which each vary by the heteroatom in the ring.

<span class="mw-page-title-main">Methylamine</span> Organic chemical compound

Methylamine is an organic compound with a formula of CH3NH2. This colorless gas is a derivative of ammonia, but with one hydrogen atom being replaced by a methyl group. It is the simplest primary amine.

Dimethylformamide is an organic compound with the chemical formula HCON(CH3)2. Its structure is HC(=O)−N(−CH3)2. Commonly abbreviated as DMF, this colourless liquid is miscible with water and the majority of organic liquids. DMF is a common solvent for chemical reactions. Dimethylformamide is odorless, but technical-grade or degraded samples often have a fishy smell due to impurity of dimethylamine. Dimethylamine degradation impurities can be removed by sparging samples with an inert gas such as argon or by sonicating the samples under reduced pressure. As its name indicates, it is structurally related to formamide, having two methyl groups in the place of the two hydrogens. DMF is a polar (hydrophilic) aprotic solvent with a high boiling point. It facilitates reactions that follow polar mechanisms, such as SN2 reactions.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

The Sandmeyer reaction is a chemical reaction used to synthesize aryl halides from aryl diazonium salts using copper salts as reagents or catalysts. It is an example of a radical-nucleophilic aromatic substitution. The Sandmeyer reaction provides a method through which one can perform unique transformations on benzene, such as halogenation, cyanation, trifluoromethylation, and hydroxylation.

<span class="mw-page-title-main">Olefin metathesis</span> Organic reaction involving the breakup and reassembly of alkene double bonds

In organic chemistry, olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds. Because of the relative simplicity of olefin metathesis, it often creates fewer undesired by-products and hazardous wastes than alternative organic reactions. For their elucidation of the reaction mechanism and their discovery of a variety of highly active catalysts, Yves Chauvin, Robert H. Grubbs, and Richard R. Schrock were collectively awarded the 2005 Nobel Prize in Chemistry.

The Corey–Fuchs reaction, also known as the Ramirez–Corey–Fuchs reaction, is a series of chemical reactions designed to transform an aldehyde into an alkyne. The formation of the 1,1-dibromoolefins via phosphine-dibromomethylenes was originally discovered by Desai, McKelvie and Ramirez. The phosphine can be partially substituted by zinc dust, which can improve yields and simplify product separation. The second step of the reaction to convert dibromoolefins to alkynes is known as Fritsch–Buttenberg–Wiechell rearrangement. The overall combined transformation of an aldehyde to an alkyne by this method is named after its developers, American chemists Elias James Corey and Philip L. Fuchs.

Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.

An insertion reaction is a chemical reaction where one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

<span class="mw-page-title-main">Zoltan Hajos</span> Hungarian organic chemist (1926–2022)

Zoltan George Hajos was a Hungarian-American organic chemist. Originally an academic in his native Budapest, then an industrial chemist in the pharmaceutical industry, he is known for the Hajos–Parrish–Eder–Sauer–Wiechert reaction.

In organic chemistry, Nef synthesis is the addition of sodium acetylides to aldehydes and ketones to yield propargyl alcohols. It is named for John Ulric Nef, who discovered the reaction in 1899.

<span class="mw-page-title-main">Doisynolic acid</span> Chemical compound

Doisynolic acid is a synthetic, orally active, nonsteroidal estrogen that was never marketed. The reaction of estradiol or estrone with potassium hydroxide, a strong base, results in doisynolic acid as a degradation product, which retains high estrogenic activity, and this reaction was how the drug was discovered, in the late 1930s. The drug is a highly active and potent estrogen by the oral or subcutaneous route. The reaction of equilenin or dihydroequilenin with potassium hydroxide was also found to produce bisdehydrodoisynolic acid, whose levorotatory isomer is an estrogen with an "astonishingly" high degree of potency, while the dextrorotatory isomer is inactive. Doisynolic acid was named after Edward Adelbert Doisy, a pioneer in the field of estrogen research and one of the discoverers of estrone.

References

  1. Suggs, J. William. Organic Chemistry. Barron's, 2002, p. 109. ISBN   0-7641-1925-7
  2. 1 2 Alfred Hassner, C. Stumer. Organic syntheses based on name reactions. Elsevier, 2002. ISBN   0-08-043260-3
  3. 1 2 3 Li, Jie Jack. Name Reactions: A Collection of Detailed Reaction Mechanisms. Springer, 2003. ISBN   3-540-40203-9
  4. Bradford P. Mundy; Michael G. Ellerd; Frank G. Favaloro, Jr. Name Reactions and Reagents in Organic Synthesis. Wiley, 2005. ISBN   0-471-22854-0
  5. Bunnett, Joseph F. (2018). "Organic Name Reactions. A contribution to the terminology of organic chemistry, biochemistry, and theoretical organic chemistry. Helmut Krauch and Werner Kunz. Translated from the second revised German edition by John M. Harkin. Wiley, New York, 1964. xxiv + 620 pp. Illus. $16". Science. 147 (3659): 726–727. Bibcode:1965Sci...147..726K. doi:10.1126/science.147.3659.726.