Rothemund reaction

Last updated
Paul Rothemund (chemist, born 1904)
Named after Karl Wilhelm Rosenmund
Reaction type Condensation reaction
The Rothemund reaction H2TPPsyn.png
The Rothemund reaction

The Rothemund reaction is a condensation/oxidation process that converts four pyrroles and four aldehydes into a porphyrin. It is based on work by Paul Rothemund, who first reported it in 1936. [1] The method underpins more modern synthesis such as those described by Adler and Longo and by Lindsey. The Rothemund reactions is common in university teaching labs. [2]

Contents

Method

The reaction employs an organic acidic medium such as acetic acid or propionic acid as typical reaction solvents. Alternatively p-toluenesulfonic acid or various Lewis acids can be used with chlorinated solvents. The aldehyde and pyrrole are heated in this medium to afford modest yields of the meso tetrasubstituted porphyrins [RCC4H2N]4H2. The reaction entails both condensation of the aldehydes with the 2,5-positions of the pyrrole but also oxidative dehydrogenation of the porphyrinogen [RCC4H2NH]4.

Brilliant crystals of meso-tetratolylporphyrin, prepared from 4-methylbenzaldehyde and pyrrole in refluxing propionic acid Tetratolylporphyrin.jpg
Brilliant crystals of meso-tetratolylporphyrin, prepared from 4-methylbenzaldehyde and pyrrole in refluxing propionic acid

Reaction history

The multi-step syntheses of hemin and chlorophyll by Hans Fischer were awarded by a Nobel Prize in Chemistry. [3] [4] This has inspired the work of his student Paul Rothemund to develop a simple one pot synthesis of porphyrins. In 1935, Paul Rothemund reported the formation of porphyrin, from a simple reaction of pyrrole with gaseous acetaldehyde or formaldehyde in methanol followed by treatment with various concentrations of hydrochloric acid. [5] One year later Paul Rothemund announced the applicability of his reaction to other aldehydes, by which he was able to explore large number of porphyrins. [6] Here he detailed the synthesis of porphine, the fundamental ring system in all the porphyrins. He performed the porphin synthesis at a temperature of 90-95 °C and high pressure in sealed pyrex glass tubes, by reacting pyrrole, 2 % formaldehyde and pyridine in methanol for 30 hours. [7]

A simplified version of Rothemund porphyrin synthesis was described by Alan D. Adler and Frederick R. Longo in 1966. It utilizes mild organic acids as catalysts and reaction medium and is conducted in open air. Seventy aldehydes gave corresponding meso-substituted porphyrins. The reaction time was shortened to 30 minutes and yields improved to 20%. [8] The Alder-Logo reaction protocol was further modified by Lindsey et al. Using Lewis acid catalyst (boron trifluoride) or strong organic acids (trifluoroacetic acid) in chlorinated solvents, yields improved to 30-40%. [9]

Green chemistry variants have been developed in which the reaction is performed with microwave irradiation using reactants adsorbed on acidic silica gel [10] or at high temperature in the gas phase. [11]

Related Research Articles

<span class="mw-page-title-main">Elias James Corey</span> American chemist (born 1928)

Elias James Corey is an American organic chemist. In 1990, he won the Nobel Prize in Chemistry "for his development of the theory and methodology of organic synthesis", specifically retrosynthetic analysis.

Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

<span class="mw-page-title-main">Porphyrin</span> Heterocyclic organic compound with four modified pyrrole subunits

Porphyrins are a group of heterocyclic, macrocyclic, organic compounds, composed of four modified pyrrole subunits interconnected at their α carbon atoms via methine bridges. In vertebrates, an essential member of the porphyrin group is heme, which is a component of hemoproteins, whose functions include carrying oxygen in the bloodstream. In plants, an essential porphyrin derivative is chlorophyll, which is involved in light harvesting and electron transfer in photosynthesis.

<span class="mw-page-title-main">Ene reaction</span> Reaction in organic chemistry

In organic chemistry, the ene reaction is a chemical reaction between an alkene with an allylic hydrogen and a compound containing a multiple bond, in order to form a new σ-bond with migration of the ene double bond and 1,5 hydrogen shift. The product is a substituted alkene with the double bond shifted to the allylic position.

The Pictet–Spengler reaction is a chemical reaction in which a β-arylethylamine undergoes condensation with an aldehyde or ketone followed by ring closure. The reaction was first discovered in 1911 by Amé Pictet and Theodor Spengler. Traditionally, an acidic catalyst in protic solvent was employed with heating; however, the reaction has been shown to work in aprotic media in superior yields and sometimes without acid catalysis. The Pictet–Spengler reaction can be considered a special case of the Mannich reaction, which follows a similar reaction pathway. The driving force for this reaction is the electrophilicity of the iminium ion generated from the condensation of the aldehyde and amine under acid conditions. This explains the need for an acid catalyst in most cases, as the imine is not electrophilic enough for ring closure but the iminium ion is capable of undergoing the reaction.

<span class="mw-page-title-main">Porphine</span> Chemical compound

Porphine or porphin is an organic compound of empirical formula C20H14N4. It is heterocyclic and aromatic. The molecule is a flat macrocycle, consisting of four pyrrole-like rings joined by four methine bridges, which makes it the simplest of the tetrapyrroles.

The Stetter reaction is a reaction used in organic chemistry to form carbon-carbon bonds through a 1,4-addition reaction utilizing a nucleophilic catalyst. While the related 1,2-addition reaction, the benzoin condensation, was known since the 1830s, the Stetter reaction was not reported until 1973 by Dr. Hermann Stetter. The reaction provides synthetically useful 1,4-dicarbonyl compounds and related derivatives from aldehydes and Michael acceptors. Unlike 1,3-dicarbonyls, which are easily accessed through the Claisen condensation, or 1,5-dicarbonyls, which are commonly made using a Michael reaction, 1,4-dicarbonyls are challenging substrates to synthesize, yet are valuable starting materials for several organic transformations, including the Paal–Knorr synthesis of furans and pyrroles. Traditionally utilized catalysts for the Stetter reaction are thiazolium salts and cyanide anion, but more recent work toward the asymmetric Stetter reaction has found triazolium salts to be effective. The Stetter reaction is an example of umpolung chemistry, as the inherent polarity of the aldehyde is reversed by the addition of the catalyst to the aldehyde, rendering the carbon center nucleophilic rather than electrophilic.

Lanthanide triflates are triflate salts of the lanthanides. These salts have been investigated for application in organic synthesis as Lewis acid catalysts. These catalysts function similarly to aluminium chloride or ferric chloride, but they are water-tolerant (stable in water). Commonly written as Ln(OTf)3·(H2O)9 the nine waters are bound to the lanthanide, and the triflates are counteranions, so more accurately lanthanide triflate nonahydrate is written as [Ln(H2O)9](OTf)3.

<span class="mw-page-title-main">Protoporphyrin IX</span> Chemical compound

Protoporphyrin IX is an organic compound, classified as a porphyrin, that plays an important role in living organisms as a precursor to other critical compounds like heme (hemoglobin) and chlorophyll. It is a deeply colored solid that is not soluble in water. The name is often abbreviated as PPIX.

<span class="mw-page-title-main">Nozaki–Hiyama–Kishi reaction</span> Coupling reaction used in organic synthesis

The Nozaki–Hiyama–Kishi reaction is a nickel/chromium coupling reaction forming an alcohol from the reaction of an aldehyde with an allyl or vinyl halide. In their original 1977 publication, Tamejiro Hiyama and Hitoshi Nozaki reported on a chromium(II) salt solution prepared by reduction of chromic chloride by lithium aluminium hydride to which was added benzaldehyde and allyl chloride:

<span class="mw-page-title-main">Tetraphenylporphyrin</span> Chemical compound

Tetraphenylporphyrin, abbreviated TPP or H2TPP, is a synthetic heterocyclic compound that resembles naturally occurring porphyrins. Porphyrins are dyes and cofactors found in hemoglobin and cytochromes and are related to chlorophyll and vitamin B12. The study of naturally occurring porphyrins is complicated by their low symmetry and the presence of polar substituents. Tetraphenylporphyrin is hydrophobic, symmetrically substituted, and easily synthesized. The compound is a dark purple solid that dissolves in nonpolar organic solvents such as chloroform and benzene.

Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids.

In organic chemistry, the Baylis–Hillman, Morita–Baylis–Hillman, or MBH reaction is a carbon-carbon bond-forming reaction between an activated alkene and a carbon electrophile in the presence of a nucleophilic catalyst, such as a tertiary amine or phosphine. The product is densely functionalized, joining the alkene at the α-position to a reduced form of the electrophile.

<span class="mw-page-title-main">Ynone</span> Organic compounds of the form RC≡CC(=O)R’

In organic chemistry, an ynone is an organic compound containing a ketone functional group and a C≡C triple bond. Many ynones are α,β-ynones, where the carbonyl and alkyne groups are conjugated. Capillin is a naturally occurring example. Some ynones are not conjugated.

<span class="mw-page-title-main">Porphyrinogen</span>

In biochemistry, a porphyrinogen is a member of a class of naturally occurring compounds with a tetrapyrrole core, a macrocycle of four pyrrole rings connected by four methylene bridges. They can be viewed as derived from the parent compound hexahydroporphine by the substitution of various functional groups for hydrogen atoms in the outermost (20-carbon) ring.

<span class="mw-page-title-main">2-Methylbenzaldehyde</span> Chemical compound

2-Methylbenzaldehyde is an organic compound with the formula CH3C6H4CHO. It is a colorless liquid.

<span class="mw-page-title-main">Iron(tetraphenylporphyrinato) chloride</span> Chemical compound

Iron(tetraporphyrinato) chloride is the coordination complex with the formula Fe(TPP)Cl where TPP is the dianion [C44H28N4]2-. The compound forms blue microcrystals that dissolve in chlorinated solvent to give brown solutions. In terms of structure, the complex is five-coordinate with idealized C4v point group symmetry. It is one of more common transition metal porphyrin complexes.

Paul Wilhelm Karl Rothemund was a chemist who developed reactions related to porphyrins. The Rothemund reaction the still-classic process for the synthesis of these compounds is named for him. His grandson Paul W. K. Rothemund is also a chemist.

<span class="mw-page-title-main">Transition metal porphyrin complexes</span>

Transition metal porphyrin complexes are a family of coordination complexes of the conjugate base of porphyrins. Iron porphyrin complexes occur widely in Nature, which has stimulated extensive studies on related synthetic complexes. The metal-porphyrin interaction is a strong one such that metalloporphyrins are thermally robust. They are catalysts and exhibit rich optical properties, although these complexes remain mainly of academic interest.

<span class="mw-page-title-main">Phosphorus porphyrin</span> Organophosphorus compound

Phosphorus-centered porphyrins are conjugated polycyclic ring systems consisting of either four pyrroles with inward-facing nitrogens and a phosphorus atom at their core or porphyrins with one of the four pyrroles substituted for a phosphole. Unmodified porphyrins are composed of pyrroles and linked by unsaturated hydrocarbon bridges often acting as multidentate ligands centered around a transition metal like Cu II, Zn II, Co II, Fe III. Being highly conjugated molecules with many accessible energy levels, porphyrins are used in biological systems to perform light-energy conversion and modified synthetically to perform similar functions as a photoswitch or catalytic electron carriers. Phosphorus III and V ions are much smaller than the typical metal centers and bestow distinct photochemical properties unto the porphyrin. Similar compounds with other pnictogen cores or different polycyclic rings coordinated to phosphorus result in other changes to the porphyrin’s chemistry.

References

  1. Lindsey, Jonathan S. (2010). "Synthetic Routes to meso-Patterned Porphyrins". Accounts of Chemical Research. 43 (2): 300–311. doi:10.1021/ar900212t. PMID   19863076.
  2. Falvo, RaeAnne E.; Mink, Larry M.; Marsh, Diane F. (1999). "Microscale Synthesis and 1H NMR Analysis of Tetraphenylporphyrins". J. Chem. Educ. 1999 (76): 237–239. Bibcode:1999JChEd..76..237M. doi:10.1021/ed076p237.
  3. HANS, FISCHER (December 11, 1930). ""On haemin and the relationships between haemin and chlorophyll" Nobel Lecture" (PDF). nobelprize.org. The Nobel Prize and Literatures. Retrieved August 19, 2020.
  4. "The Nobel Prize in Chemistry 1930". nobelprize.org/. The Nobel Prize.
  5. P. Rothemund (1935). "Formation of Porphyrins from Pyrrole and Aldehydes". J. Am. Chem. Soc. 57 (10): 2010–2011. doi:10.1021/ja01313a510.
  6. P. Rothemund (1936). "A New Porphyrin Synthesis. The Synthesis of Porphin". J. Am. Chem. Soc. 58 (4): 625–627. doi:10.1021/ja01295a027.
  7. P. Rothemund (1936). "A New Porphyrin Synthesis. The Synthesis of Porphin". J. Am. Chem. Soc. 58 (4): 625–627. doi:10.1021/ja01295a027.
  8. Adler, Alan D.; Longo, Frederick R.; Finarelli, John D.; Goldmacher, Joel; Assour, Jacques; Korsakoff, Leonard (1967). "A simplified synthesis for meso-tetraphenylporphine". J. Org. Chem. 32 (2): 476. doi:10.1021/jo01288a053.
  9. Lindsey, Jonathan S.; Schreiman, Irwin C.; Hsu, Henry C.; Kearney, Patrick C.; Marguerettaz, Anne M. (March 1, 1987). "Rothemund and Adler-Longo Reactions Revisited: Synthesis of Tetraphenylporphyrins under Equilibrium Conditions". J. Org. Chem. 52 (5): 827. doi:10.1021/jo00381a022.
  10. Petit, A.; Loupy, A.; Maiuard, P.; Momenteau, M. (1992). "Microwave Irradiation in Dry Media: A New and Easy Method for Synthesis of Tetrapyrrolic Compounds". Synth. Commun. 22 (8): 1137–1142. doi:10.1080/00397919208021097.
  11. Drain, C. M.; Gong, X. (1997). "Synthesis of meso substituted porphyrins in air without solvents or catalysts". Chem. Commun. (21): 2117–2118. doi:10.1039/A704600F.