Anthranilic acid

Last updated
Anthranilic acid
Anthranilsaure.svg
C=black, H=white, O=red, N=blue 2-Aminobenzoic-acid-3D-balls.png
C=black, H=white, O=red, N=blue
Names
Preferred IUPAC name
2-Aminobenzoic acid [1]
Systematic IUPAC name
2-Aminobenzenecarboxylic acid
Other names
  • Anthranilic acid
  • o-Aminobenzoic acid
  • 2-Aminobenzoic acid
  • Vitamin L1
  • Anthranilate (conjugate base)
  • 2-AA, 2AA, AA
Identifiers
3D model (JSmol)
3DMet
471803
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.003.898 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 204-287-5
3397
KEGG
PubChem CID
RTECS number
  • CB2450000
UNII
  • InChI=1S/C7H7NO2/c8-6-4-2-1-3-5(6)7(9)10/h1-4H,8H2,(H,9,10) Yes check.svgY
    Key: RWZYAGGXGHYGMB-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C7H7NO2/c8-6-4-2-1-3-5(6)7(9)10/h1-4H,8H2,(H,9,10)
    Key: RWZYAGGXGHYGMB-UHFFFAOYAS
  • O=C(O)c1ccccc1N
Properties
C7H7NO2
Molar mass 137.138 g·mol−1
Appearancewhite or yellow solid
Odor odorless
Density 1.412 g/cm3
Melting point 146 to 148 °C (295 to 298 °F; 419 to 421 K) [2]
Boiling point 200 °C (392 °F; 473 K) (sublimes)
0.572 g/100 mL (25 °C)
Solubility very soluble in chloroform, pyridine
soluble in ethanol, ether, ethyl ether
slightly soluble in trifluoroacetic acid, benzene
log P 1.21
Vapor pressure 0.1 Pa (52.6 °C)
Acidity (pKa)
  • 2.17 (amino; H2O)
  • 4.85 (carboxyl; H2O) [3]
-77.18·10−6 cm3/mol
1.578 (144 °C)
Thermochemistry
-380.4 KJ/mol
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H318, H319
P264, P280, P305+P351+P338, P310, P337+P313
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
1
0
Flash point >150 °C (302 °F; 423 K)
>530 °C (986 °F; 803 K)
Lethal dose or concentration (LD, LC):
1400 mg/kg (oral, rat)
Safety data sheet (SDS) External MSDS
Legal status
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Anthranilic acid is an aromatic acid with the formula C6H4(NH2)(CO2H) and has a sweetish taste. [5] [6] [7] The molecule consists of a benzene ring, ortho-substituted with a carboxylic acid and an amine. As a result of containing both acidic and basic functional groups, the compound is amphoteric. Anthranilic acid is a white solid when pure, although commercial samples may appear yellow. The anion [C6H4(NH2)(CO2)], obtained by the deprotonation of anthranilic acid, is called anthranilate. Anthranilic acid was once thought to be a vitamin and was referred to as vitamin L1 in that context, but it is now known to be non-essential in human nutrition. [8]

Contents

Structure

Although not usually referred to as such, it is an amino acid. Solid anthranilic acid typically consists of both the amino-carboxylic acid and the zwitterionic ammonium carboxylate forms, and has a monoclinic crystal structure with space group P21. [9] It is triboluminescent. [10] Above 81 °C (178 °F; 354 K), it converts to an orthorhombic form with space group Pbca, which is not triboluminescent; a non-triboluminescent monoclinic phase with similar structure is also known. [10]

History and etymology

In 1840-1841, Carl Julius Fritzsche was able to extract and crystallize two acids from the products of reaction of indigo dye with caustic potash, which he called chrysanilic and anthranilic acids after their colors before purification (golden yellow and black respectively) and the plant anil ( Indigofera suffruticosa ). [11] [12] The former was identified as ortho-carboxy anil of indoxyl-2-aldehyde only in 1910 [13] while the latter was identified as salicylamide already in 1843 by Cahours. [14]

Production

Many routes to anthranilic acid have been described. Industrially it is produced from phthalic anhydride, beginning with amination:

C6H4(CO)2O + NH3 + NaOH → C6H4(C(O)NH2)CO2Na + H2O

The resulting sodium salt of phthalamic acid is decarbonylated via a Hofmann rearrangement of the amide group, induced by hypochlorite: [15]

C6H4(C(O)NH2)CO2Na + HOCl → C6H4NH2CO2H + NaCl + CO2

A related method involves treating phthalimide with sodium hypobromite in aqueous sodium hydroxide, followed by neutralization. [16] In the era when indigo dye was obtained from plants, it was degraded to give anthranilic acid.

Anthranilic acid was first obtained by base-induced degradation of indigo. [17]

Biosynthesis

Anthranilic acid is biosynthesized from chorismic acid by the action of anthranilate synthase. In organisms capable of tryptophan synthesis, anthranilate is a precursor to the amino acid tryptophan via the attachment of phosphoribosyl pyrophosphate to the amine group. After then, cyclization occurs to produce indole.

Anthranilate is the biosynthetic precursor to the amino acid tryptophan. Tryptophan biosynthesis (en).svg
Anthranilate is the biosynthetic precursor to the amino acid tryptophan.

Uses

Industrially, anthranilic acid is an intermediate in the production of azo dyes and saccharin. It and its esters are used in preparing perfumes to mimic jasmine and orange, pharmaceuticals (loop diuretics, such as furosemide) and UV-absorber as well as corrosion inhibitors for metals and mold inhibitors in soy sauce.

Anthranilate-based insect repellents have been proposed as replacements for DEET.

Fenamic acid is a derivative of anthranilic acid, [18] :235 which in turn is a nitrogen isostere of salicylic acid, which is the active metabolite of aspirin. [18] :235 Several non-steroidal anti-inflammatory drugs, including mefenamic acid, tolfenamic acid, flufenamic acid, and meclofenamic acid are derived from fenamic acid or anthranilic acid and are called "anthranilic acid derivatives" or "fenamates". [19] :17

Reactions

Anthranilic acid can be diazotized to give the diazonium cation [C6H4(CO2H)(N2)]+. This cation can be used to generate benzyne, [20] dimerized to give diphenic acid, [21] or undergo diazonium coupling reactions such as in the synthesis of methyl red. [22]

It reacts with phosgene to give isatoic anhydride, a versatile reagent. [23]

Chlorination of anthranilic acid gives the 2,4-dichloro derivative, which can undergo reductive coupling to form a biaryl compound. [24]

Safety and regulation

It is also a DEA List I Chemical because of its use in making the now-widely outlawed euphoric sedative drug methaqualone (Quaalude, Mandrax). [25]

See also

Related Research Articles

In chemistry, a zwitterion, also called an inner salt or dipolar ion, is a molecule that contains an equal number of positively and negatively charged functional groups. With amino acids, for example, in solution a chemical equilibrium will be established between the "parent" molecule and the zwitterion.

<span class="mw-page-title-main">Aniline</span> Organic compound (C₆H₅NH₂); simplest aromatic amine

Aniline is an organic compound with the formula C6H5NH2. Consisting of a phenyl group attached to an amino group, aniline is the simplest aromatic amine. It is an industrially significant commodity chemical, as well as a versatile starting material for fine chemical synthesis. Its main use is in the manufacture of precursors to polyurethane, dyes, and other industrial chemicals. Like most volatile amines, it has the odor of rotten fish. It ignites readily, burning with a smoky flame characteristic of aromatic compounds. It is toxic to humans.

<span class="mw-page-title-main">Oxime</span> Organic compounds of the form >C=N–OH

In organic chemistry, an oxime is an organic compound belonging to the imines, with the general formula RR’C=N−OH, where R is an organic side-chain and R' may be hydrogen, forming an aldoxime, or another organic group, forming a ketoxime. O-substituted oximes form a closely related family of compounds. Amidoximes are oximes of amides with general structure R1C(=NOH)NR2R3.

<span class="mw-page-title-main">Phthalic acid</span> Aromatic organic compound with formula C6H4(COOH)2

In organic chemistry, phthalic acid is an aromatic dicarboxylic acid, with formula C6H4(CO2H)2 and structure HO(O)C−C6H4−C(O)OH. Although phthalic acid is of modest commercial importance, the closely related derivative phthalic anhydride is a commodity chemical produced on a large scale. Phthalic acid is one of three isomers of benzenedicarboxylic acid, the others being isophthalic acid and terephthalic acid.

<span class="mw-page-title-main">Phthalic anhydride</span> Chemical compound

Phthalic anhydride is the organic compound with the formula C6H4(CO)2O. It is the anhydride of phthalic acid. Phthalic anhydride is a principal commercial form of phthalic acid. It was the first anhydride of a dicarboxylic acid to be used commercially. This white solid is an important industrial chemical, especially for the large-scale production of plasticizers for plastics. In 2000, the worldwide production volume was estimated to be about 3 million tonnes per year.

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

In organic chemistry, the diazo group is an organic moiety consisting of two linked nitrogen atoms at the terminal position. Overall charge-neutral organic compounds containing the diazo group bound to a carbon atom are called diazo compounds or diazoalkanes and are described by the general structural formula R2C=N+=N. The simplest example of a diazo compound is diazomethane, CH2N2. Diazo compounds should not be confused with azo compounds or with diazonium compounds.

The Hofmann rearrangement is the organic reaction of a primary amide to a primary amine with one less carbon atom. The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate. The reaction can form a wide range of products, including alkyl and aryl amines.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Michael addition reaction</span> Reaction in organic chemistry

In organic chemistry, the Michael reaction or Michael 1,4 addition is a reaction between a Michael donor and a Michael acceptor to produce a Michael adduct by creating a carbon-carbon bond at the acceptor's β-carbon. It belongs to the larger class of conjugate additions and is widely used for the mild formation of carbon-carbon bonds.

<span class="mw-page-title-main">Diazonium compound</span> Group of organonitrogen compounds

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group [R−N+≡N]X where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halide. The parent compound where R is hydrogen, is diazenylium.

<i>o</i>-Phenylenediamine Chemical compound

o-Phenylenediamine (OPD) is an organic compound with the formula C6H4(NH2)2. This aromatic diamine is an important precursor to many heterocyclic compounds. OPD is a white compound although samples appear darker owing to oxidation by air. It is isomeric with m-phenylenediamine and p-phenylenediamine.

<span class="mw-page-title-main">Phthalimide</span> Organic Compound

Phthalimide is the organic compound with the formula C6H4(CO)2NH. It is the imide derivative of phthalic anhydride. It is a sublimable white solid that is slightly soluble in water but more so upon addition of base. It is used as a precursor to other organic compounds as a masked source of ammonia.

The Balz–Schiemann reaction is a chemical reaction in which a primary aromatic amine is transformed to an aryl fluoride via a diazonium tetrafluoroborate intermediate. This reaction is a traditional route to fluorobenzene and some related derivatives, including 4-fluorobenzoic acid.

3-Nitrobenzoic acid is an organic compound with the formula C6H4(NO2)CO2H. It is an aromatic compound and under standard conditions, it is an off-white solid. The two substituents are in a meta position with respect to each other, giving the alternative name of m-nitrobenzoic acid. This compound can be useful as it is a precursor to 3-aminobenzoic acid, which is used to prepare some dyes.

<span class="mw-page-title-main">Erlenmeyer–Plöchl azlactone and amino-acid synthesis</span>

The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone.

<i>N</i>-Acetylanthranilic acid Chemical compound

N-Acetylanthranilic acid is an organic compound with the molecular formula C9H9NO3. It is an intermediate product in catabolism of quinaldine in Arthrobacter sp., and is further metabolized to anthranilic acid.

<span class="mw-page-title-main">Isatoic anhydride</span> Chemical compound

Isatoic anhydride is an organic compound derived from anthranilic acid. A white solid, it is prepared by reaction of anthranilic acid with phosgene.

<i>N</i>-Phenylglycine Chemical compound

N-Phenylglycine is an organic compound with the formula C6H5NHCH2CO2H. This white solid achieved fame as the industrial precursor to indigo dye. It is a non-proteinogenic alpha amino acid related to sarcosine, but with an N-phenyl group in place of N-methyl.

<span class="mw-page-title-main">Diphenic acid</span> Dicarboxylic acid of biphenyl

Diphenic acid, also known as Dibenzoic acid, is an organic compound with the formula (C6H4CO2H)2. It is the most studied of several isomeric dicarboxylic acids of biphenyl. It is a white solid that can be prepared in the laboratory from anthranilic acid via the diazonium salt. It is the product of the microbial action on phenanthrene.

References

  1. "Front Matter". Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 748. doi:10.1039/9781849733069-FP001. ISBN   978-0-85404-182-4.
  2. IPCS
  3. Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. pp. 5–89. ISBN   978-1498754286.
  4. Anvisa (2023-03-31). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-04-04). Archived from the original on 2023-08-03. Retrieved 2023-08-15.
  5. Acton, Q. Ashton (2013). Aminobenzoic Acids—Advances in Research and Application (2013 ed.). Atlanta: ScholarlyEditions. p. 23. ISBN   9781481684842 via Google Books.
  6. Hardy, Mark R. (1997). "Glycan Labeling with the Flurophores 2-Aminobenzamide and Antranilic Acid". In Townsend, R. Reid; Hotchkiss, Arland T. Jr. (eds.). Techniques in Glycobiology. Marcel Dekker, Inc. p. 360. ISBN   9780824798222 via Google Books.
  7. The Merck Index, 10th Ed. (1983), p.62., Rahway: Merck & Co.
  8. Davidson, Michael W. (2004). "Anthranilic Acid (Vitamin L)]". Florida State University . Retrieved November 20, 2019.
  9. Brown, C. J. (1968). "The crystal structure of anthranilic acid". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 302 (1469): 185–199. Bibcode:1968RSPSA.302..185B. doi:10.1098/rspa.1968.0003. S2CID   93221347.
  10. 1 2 Hardy, Gordon E.; Kaska, William C.; Chandra, B. P.; Zink, Jeffrey I. (March 1981). "Triboluminescence-structure relationships in polymorphs of hexaphenylcarbodiphosphorane and anthranilic acid, molecular crystals, and salts". Journal of the American Chemical Society. 103 (5): 1074–1079. doi:10.1021/ja00395a014.
  11. Fritzsche, J. (1841). "Ueber die Producte der Einwirkung des Kali auf das Indigblau". Journal für Praktische Chemie. 23 (1): 67–83. doi:10.1002/prac.18410230104. ISSN   0021-8383.
  12. Fritzsche, J. (1841). "Ueber die Produkte der Einwirkung von Kali auf Indigblau". Justus Liebigs Annalen der Chemie. 39 (1): 76–91. doi:10.1002/jlac.18410390104. ISSN   0075-4617.
  13. Sheibley, Fred E. (March 1943). "Carl Julius Fritzsche and the discovery of anthranilic acid, 1841". Journal of Chemical Education. 20 (3): 115. doi:10.1021/ed020p115. ISSN   0021-9584.
  14. The Chemical Gazette. 1843.
  15. Maki, Takao; Takeda, Kazuo (2000). "Benzoic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a03_555. ISBN   3527306730..
  16. Vogel's Textbook of Practical Organic Chemistry, 4th Ed., (B. S. Furniss et al., Eds.) (1978), p.666, London: Longman.
  17. Sheibley, Fred E. (1943). "Carl Julius Fritzsche and the discovery of anthranilic acid, 1841". Journal of Chemical Education. 20 (3): 115. Bibcode:1943JChEd..20..115S. doi:10.1021/ed020p115.
  18. 1 2 Sriram D, Yogeeswari P. Medicinal Chemistry, 2nd Edition. Pearson Education India, 2010. ISBN   9788131731444
  19. Auburn University course material. Jack DeRuiter, Principles of Drug Action 2, Fall 2002 1: Non-Steroidal Antiinflammatory Drugs (NSAIDS)
  20. Logullo, F. M.; Seitz, A. H.; Friedman, L. (1968). "Benzenediazonium-2-carboxy- and Biphenylene". Organic Syntheses . 48: 12.
  21. Atkinson, E. R.; Lawler, H. J. (1927). "Diphenic Acid". Organic Syntheses. 7: 30. doi:10.15227/orgsyn.007.0030.
  22. Clarke, H. T.; Kirner, W. R. (1922). "Methyl Red". Organic Syntheses . 2: 47.
  23. Wagner, E. C.; Fegley, Marion F. (1947). "Isatoic anhydride". Org. Synth. 27: 45. doi:10.15227/orgsyn.027.0045.
  24. Atkinson, Edward R.; Murphy, Donald M.; Lufkin, James E. (1951). "dl-4,4',6,6'-Tetrachlorodiphenic Acid". Organic Syntheses . 31: 96.
  25. Angelos SA, Meyers JA (1985). "The isolation and identification of precursors and reaction products in the clandestine manufacture of methaqualone and mecloqualone". Journal of Forensic Sciences. 30 (4): 1022–1047. doi:10.1520/JFS11044J. PMID   3840834.